The current work is devoted to the investigation of oxygen impact on the structure and properties of titanium. For this purpose, oxygen was introduced into titanium during chamber electro-slag remelting by three different methods: alloying by oxygen-rich residues from the Kroll process to final values between 0.053 wt.-% and 0.40 wt.-%, by reaction with the gas phase to 0.27 wt.-% and by introduction of TiO 2 nanoparticles to 0.73 wt.-%. The influence of oxygen on microstructure of titanium during crystallization, heat treatment and deformation is determined as well as the effect of oxygen on the hardness and the mechanical properties of the material in different structural states. Furthermore, control methods of the structure formation process by thermal effects are proposed. Results show that the chamber electroslag remelting allows obtaining a homogeneous structure of the ingot in the investigated range of oxygen content in titanium. The hardness does not vary by more than 10 percent in longitudinal or radial direction in any of the remelted ingots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.