The “red reflex test” is used to screen children for leukocoria (“white eye”) in a standard pediatric examination, but is ineffective at detecting many eye disorders. Leukocoria also presents in casual photographs. The clinical utility of screening photographs for leukocoria is unreported. Here, a free smartphone application (CRADLE: ComputeR-Assisted Detector of LEukocoria) was engineered to detect photographic leukocoria and is available for download under the name “White Eye Detector.” This study determined the sensitivity, specificity, and accuracy of CRADLE by retrospectively analyzing 52,982 longitudinal photographs of children, collected by parents before enrollment in this study. The cohort included 20 children with retinoblastoma, Coats’ disease, cataract, amblyopia, or hyperopia and 20 control children. For 80% of children with eye disorders, the application detected leukocoria in photographs taken before diagnosis by 1.3 years (95% confidence interval, 0.4 to 2.3 years). The CRADLE application allows parents to augment clinical leukocoria screening with photography.
Repulsive electrostatic forces between prion‐like proteins are a barrier against aggregation. In neuropharmacology, however, a prion's net charge (Z) is not a targeted parameter. Compounds that selectively boost prion Z remain unreported. Here, we synthesized compounds that amplified the negative charge of misfolded superoxide dismutase‐1 (SOD1) by acetylating lysine‐NH3+ in amyloid‐SOD1, without acetylating native‐SOD1. Compounds resembled a “ball and chain” mace: a rigid amyloid‐binding “handle” (benzothiazole, stilbene, or styrylpyridine); an aryl ester “ball”; and a triethylene glycol chain connecting ball to handle. At stoichiometric excess, compounds acetylated up to 9 of 11 lysine per misfolded subunit (ΔZfibril=−8100 per 103 subunits). Acetylated amyloid‐SOD1 seeded aggregation more slowly than unacetylated amyloid‐SOD1 in vitro and organotypic spinal cord (these effects were partially due to compound binding). Compounds exhibited reactivity with other amyloid and non‐amyloid proteins (e.g., fibrillar α‐synuclein was peracetylated; serum albumin was partially acetylated; carbonic anhydrase was largely unacetylated).
Repulsive electrostatic forces between prion‐like proteins are a barrier against aggregation. In neuropharmacology, however, a prion's net charge (Z) is not a targeted parameter. Compounds that selectively boost prion Z remain unreported. Here, we synthesized compounds that amplified the negative charge of misfolded superoxide dismutase‐1 (SOD1) by acetylating lysine‐NH3+ in amyloid‐SOD1, without acetylating native‐SOD1. Compounds resembled a “ball and chain” mace: a rigid amyloid‐binding “handle” (benzothiazole, stilbene, or styrylpyridine); an aryl ester “ball”; and a triethylene glycol chain connecting ball to handle. At stoichiometric excess, compounds acetylated up to 9 of 11 lysine per misfolded subunit (ΔZfibril=−8100 per 103 subunits). Acetylated amyloid‐SOD1 seeded aggregation more slowly than unacetylated amyloid‐SOD1 in vitro and organotypic spinal cord (these effects were partially due to compound binding). Compounds exhibited reactivity with other amyloid and non‐amyloid proteins (e.g., fibrillar α‐synuclein was peracetylated; serum albumin was partially acetylated; carbonic anhydrase was largely unacetylated).
Described herein are the first total syntheses of (�)-dracocephalone A (1) and (�)-dracocequinones A (4) and B (5). The synthesis was initially envisioned as proceeding through an intramolecular isobenzofuran Diels-Alder reaction, a strategy that eventually evolved into a Lewis acid-promoted spirocyclization. This highly diastereoselective transformation set the stage for transdecalin formation and a late-stage Suárez oxidation that produced a [3.2.1] oxabicycle suited for conversion to 1. Brønsted acid-mediated aromatization, followed by a series of carefully choreographed oxidations, allowed for rearrangement to a [2.2.2] oxabicycle poised for conversion to 4 and 5. Chagas disease (CD) is transmitted by the protozoan[*] T.
Described herein are the first total syntheses of (�)-dracocephalone A (1) and (�)-dracocequinones A (4) and B (5). The synthesis was initially envisioned as proceeding through an intramolecular isobenzofuran Diels-Alder reaction, a strategy that eventually evolved into a Lewis acid-promoted spirocyclization. This highly diastereoselective transformation set the stage for transdecalin formation and a late-stage Suárez oxidation that produced a [3.2.1] oxabicycle suited for conversion to 1. Brønsted acid-mediated aromatization, followed by a series of carefully choreographed oxidations, allowed for rearrangement to a [2.2.2] oxabicycle poised for conversion to 4 and 5. Chagas disease (CD) is transmitted by the protozoan[*] T.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.