Hearing loss is the most common sensory deficit in humans. We show that a point mutation in DCDC2 (DCDC2a), a member of doublecortin domain-containing protein superfamily, causes non-syndromic recessive deafness DFNB66 in a Tunisian family. Using immunofluorescence on rat inner ear neuroepithelia, DCDC2a was found to localize to the kinocilia of sensory hair cells and the primary cilia of nonsensory supporting cells. DCDC2a fluorescence is distributed along the length of the kinocilium with increased density toward the tip. DCDC2a-GFP overexpression in non-polarized COS7 cells induces the formation of long microtubule-based cytosolic cables suggesting a role in microtubule formation and stabilization. Deafness mutant DCDC2a expression in hair cells and supporting cells causes cilium structural defects, such as cilium branching, and up to a 3-fold increase in length ratios. In zebrafish, the ortholog dcdc2b was found to be essential for hair cell development, survival and function. Our results reveal DCDC2a to be a deafness gene and a player in hair cell kinocilia and supporting cell primary cilia length regulation likely via its role in microtubule formation and stabilization.
The zebrafish (Danio rerio) has become a valuable vertebrate model for human hearing and balance disorders because it combines powerful genetics, excellent embryology, and exceptional in vivo visualization in one organism. In this study, we investigated auditory function of zebrafish at early developmental stages using the microphonic potential method. This is the first study to report ontogeny of response of hair cells in any fish during the first week post fertilization. The right ear of each zebrafish embedded in agarose was linearly stimulated with a glass probe that was driven by a calibrated piezoelectric actuator. Using beveled micropipettes filled with standard fish saline, extracellular microphonic potentials were recorded from hair cells in the inner ear of zebrafish embryos or larvae in response to 20, 50, 100, and 200-Hz stimulation. Saccular hair cells expressing green fluorescent protein of the transgenic zebrafish from 2 to 7 days post fertilization (dpf) were visualized and quantified using confocal microscopy. The otic vesicles' areas, otoliths' areas, and saccular hair cell count and density increased linearly with age and standard body length. Microphonic responses increased monotonically with stimulus intensity, stimulus frequency, and age of zebrafish. Microphonic threshold at 200 Hz gradually decreased with zebrafish age. The increases in microphonic response and sensitivity correlate with the increases in number and density of hair cells in the saccule. These results enhance our knowledge of early development of auditory function in zebrafish and provide the control data that can be used to evaluate hearing of young zebrafish morphants or mutants.
Hereditary hearing loss is characterized by a high degree of genetic heterogeneity. Here we present OTOGL mutations, a homozygous one base pair deletion (c.1430 delT) causing a frameshift (p.Val477Glufs(∗)25) in a large consanguineous family and two compound heterozygous mutations, c.547C>T (p.Arg183(∗)) and c.5238+5G>A, in a nonconsanguineous family with moderate nonsyndromic sensorineural hearing loss. OTOGL maps to the DFNB84 locus at 12q21.31 and encodes otogelin-like, which has structural similarities to the epithelial-secreted mucin protein family. We demonstrate that Otogl is expressed in the inner ear of vertebrates with a transcription level that is high in embryonic, lower in neonatal, and much lower in adult stages. Otogelin-like is localized to the acellular membranes of the cochlea and the vestibular system and to a variety of inner ear cells located underneath these membranes. Knocking down of otogl with morpholinos in zebrafish leads to sensorineural hearing loss and anatomical changes in the inner ear, supporting that otogelin-like is essential for normal inner ear function. We propose that OTOGL mutations affect the production and/or function of acellular structures of the inner ear, which ultimately leads to sensorineural hearing loss.
In a large consanguineous Turkish kindred with recessive nonsyndromic, prelingual, profound hearing loss, we identified in the gene FAM65B (MIM611410) a splice site mutation (c.102-1G>A) that perfectly cosegregates with the phenotype in the family. The mutation leads to exon skipping and deletion of 52-amino acid residues of a PX membrane localization domain. FAM65B is known to be involved in myotube formation and in regulation of cell adhesion, polarization, and migration. We show that wild-type Fam65b is expressed during embryonic and postnatal development stages in murine cochlea, and that the protein localizes to the plasma membranes of the stereocilia of inner and outer hair cells of the inner ear. The wild-type protein targets the plasma membrane, whereas the mutant protein accumulates in cytoplasmic inclusion bodies and does not reach the membrane. In zebrafish, knockdown of fam65b leads to significant reduction of numbers of saccular hair cells and neuromasts and to hearing loss. We conclude that FAM65B is a plasma membrane-associated protein of hair cell stereocilia that is essential for hearing.deafness | whole-exome sequencing | congenital | Mendelian disorder | sensorineural H earing loss is the most common sensory problem, affecting approximately 1 in 500 newborns. Most cases are the consequence of mutations in single genes with specific functions in the inner ear (1) (http://hereditaryhearingloss.org). Hearing depends on the ability of the inner ear to convert acoustic waves into electrical signals. This process originates in the stereocilia, actin-rich structures that project from the apical pole of cochlear hair cells and are interconnected in the shape of a staircase to form the hair bundle. Most of the ∼50 hair-bundle proteins identified so far are the products of genes that when mutated lead to hearing loss (2). Thus, the genetic approach has played a major role in elucidating the molecular components of normal hearing.Here we present Family With Sequence Similarity 65, Member B (FAM65B, MIM611410) as a previously unrecognized, plasma membrane-associated protein of hair cell stereocilia. The critical role of FAM65B in human hearing was revealed by genetic analysis of a large family with hereditary deafness. In the zebrafish, knocking down the ortholog of FAM65B led to sensorineural hearing loss. Results A Splice Site Mutation in FAM65B Causes Profound SensorineuralHearing Loss in a Turkish Family. In a large consanguineous kindred of Turkish origin (Fig. 1A), six affected individuals had symmetric profound sensorineural hearing loss (Fig. 1B). Anamnestic evaluation and audiograms indicated congenital/prelingual onset hearing loss in all affected individuals. Available audiograms do not suggest progression of hearing loss. Transient evoked otoacoustic emissions and acoustic reflexes were negative in all affected members of the family. Auditory brainstem responses were absent as well. Affected individuals had neither delay in gross motor development nor balance problems, vertigo, dizziness, or n...
The zebrafish (Danio rerio) is a valuable vertebrate model for human hearing disorders because of many advantages in genetics, embryology, and in vivo visualization. In this study, we investigated auditory function of zebrafish during the first week postfertilization using microphonic potential recording. Extracellular microphonic potentials were recorded from hair cells in the inner ear of wild-type AB and transgenic Et(krt4:GFP) sqet4 zebrafish at 3, 5, and 7 days postfertilization in response to 20, 50, 100, 200, 300, and 400-Hz acoustic stimulation. We found that microphonic threshold significantly decreased with age in zebrafish. However, there was no significant difference of microphonic responses between wild-type and transgenic zebrafish, indicating that the transgenic zebrafish have normal hearing like wild-type zebrafish. In addition, we observed that microphonic threshold did not change with the recording electrode location. Furthermore, microphonic threshold increased significantly at all tested stimulus frequencies after displacement of the saccular otolith but only increased at low frequencies after displacement of the utricular otolith, showing that the saccule rather than the utricle plays the major role in larval zebrafish hearing. These results enhance our knowledge of early development of auditory function in zebrafish and the factors affecting hearing assessment with microphonic potential recording.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.