In previous research, volatile organic compounds (VOCs) emitted by various bacteria into the chemosphere were suggested to play a significant role in the antagonistic interactions between microorganisms occupying the same ecological niche and between bacteria and target eukaryotes. Moreover, a number of volatiles released by bacteria were reported to suppress quorum-sensing cell-to-cell communication in bacteria, and to stimulate plant growth. Here, volatiles produced by Pseudomonas and Serratia strains isolated mainly from the soil or rhizosphere exhibited bacteriostatic action on phytopathogenic Agrobacterium tumefaciens and fungi and demonstrated a killing effect on cyanobacteria, flies (Drosophila melanogaster), and nematodes (Caenorhabditis elegans). VOCs emitted by the rhizospheric Pseudomonas chlororaphis strain 449 and by Serratia proteamaculans strain 94 isolated from spoiled meat were identified using gas chromatography-mass spectrometry analysis, and the effects of the main headspace compounds—ketones (2-nonanone, 2-heptanone, 2-undecanone) and dimethyl disulfide—were inhibitory toward the tested microorganisms, nematodes, and flies. The data confirmed the role of bacterial volatiles as important compounds involved in interactions between organisms under natural ecological conditions.
Various species of cyanobacteria, diatoms and dinoflagellates are capable of synthesizing the non-proteinogenic neurotoxic amino acid β-N-methylamino-L-alanine (BMAA), which is known to be a causative agent of human neurodegeneration. Similar to most cyanotoxins, the biological and ecological functions of BMAA in cyanobacteria are unknown. In this study, we show for the first time that BMAA, in micromolar amounts, inhibits the formation of heterocysts (specialized nitrogen-fixing cells) in heterocystous, diazotrophic cyanobacteria [Anabaena sp. PCC 7120, Nostoc punctiforme PCC 73102 (ATCC 29133), Nostoc sp. strain 8963] under conditions of nitrogen starvation. The inhibitory effect of BMAA is abolished by the addition of glutamate. To understand the genetic reason for the observed phenomenon, we used qPCR to study the expression of key genes involved in cell differentiation and nitrogen metabolism in the model cyanobacterium Anabaena sp. PCC 7120. We observed that in the presence of BMAA, Anabaena sp. PCC 7120 does not express two essential genes associated with heterocyst differentiation, namely, hetR and hepA. We also found that addition of BMAA to cyanobacterial cultures with mature heterocysts inhibits nifH gene expression and nitrogenase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.