Cell-cell contact between stem cells and cellular determinants of the microenvironment plays an essential role in controlling cell division. Using human hematopoietic progenitor cells (CD34 + /CD38 − ) and a stroma cell line (AFT024) as a model, we have studied the initial behavioral and molecular sequel of this interaction. Time-lapse microscopy showed that CD34 + / CD38 − cells actively migrated toward and sought contact with stroma cells and 30% of them adhered firmly to AFT024 stroma through the uropod. CD44 and CD34 are colocalized at the site of contact. Gene expression profiles of CD34 + / CD38 − cells upon cultivation with or without stroma for 16, 20, 48, or 72 hours were analyzed using our human genome cDNA microarray. Chk1, egr1, and cxcl2 were among the first genes upregulated within 16 hours. Genes with the highest upregulation throughout the time course included tubulin genes, ezrin, c1qr1, fos, pcna, mcm6, ung, and dnmt1, genes that play an essential role in reorganization of the cytoskeleton system, stabilization of DNA, and methylation patterns. Our results demonstrate directed migration of CD34 + /CD38 − cells toward AFT024 and adhesion through the uropod and that upon interaction with supportive stroma, reorganization of the cytoskeleton system, regulation of cell division, and maintenance of genetic stability represent the most essential steps.
Cell-cell contact between stem cells and cellular determinants of the microenvironment plays an essential role in the regulation of self-renewal and differentiation. The stromal cell line derived from murine fetal liver (AFT024) has been shown to support maintenance of primitive human hematopoietic progenitor cells (HPC) in vitro. We have studied the interaction between HPC (defined as CD34+/CD38− umbilical cord blood cells) and AFT024 and the impact of co-cultivation on the behavior and gene expression of HPC. By time lapse microscopy the mobility and behavior of CD34+/CD38− cells were monitored. Approximately 30% of the CD34+/CD38− cells adhered to the cellular niche through an uropod. CD44 and CD34 were co-localized at the site of contact. Gene expression profiles of CD34+/CD38− cells were then compared upon co-cultivation either with or without AFT024. After cultivation for 16h, 20h, 48h or 72h the HPC were separated form the feeder layer cells by a second FAC-Sort. Differential gene expression was analyzed using our Human Genome cDNA Microarray of over 51,145 ESTs. Among the genes with the highest up-regulation in contact with AFT024 were several genes involved in cell adhesion, proliferation and DNA-modification including tubulin genes, ezrin, complement component 1 q subcomponent 1 (C1QR1), proto-oncogene proteins c-fos and v-fos, proliferating cell nuclear antigen (PCNA), HLA-DR, gamma-glutamyl hydrolase (GGH), minichromosome maintenance deficient 6 (MCM6), uracil-DNA glycolase (UNG) and DNA-methyltransferase 1 (DNMT1). In contrast, genes that were down-regulated after contact with AFT024 included collagenase type iv (MMP2), elastin (ELN) and hemoglobin genes. Differential expression of six genes was confirmed by RT-PCR. Other authors have reported on the differential gene expression profiles of CD34+ cells derived from the bone marrow versus those from G-CSF mobilized blood. As CD34+ cells from the bone marrow might represent cells exposed to the natural HPC niche we have then compared our findings with these experiments. In these comparisons we identified several overlapping genes that are involved in regulation of cell cycle and DNA repair including PCNA, DNMT1, MCM6, MCM2, CDC28 protein kinase regulatory subunit 1B (CKS1B), Topoisomerase II (TOP2a), DNA Ligase 1 (LIG1) and DNA mismatch repair protein MLH1. All these genes were up-regulated among CD34+/CD38− cells upon co-culture with AFT024, as well as among CD34+ cells derived from the bone marrow versus those from peripheral blood. Our studies support the hypothesis that intimate contact and adhesive interaction of HPC with their niche profoundly influenced their proliferative potential and their differentiation program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.