Allergy diagnosis based on purified allergen molecules provides detailed information regarding the individual sensitization profile of allergic patients, allows monitoring of the development of allergic disease and of the effect of therapies on the immune response to individual allergen molecules. Allergen microarrays contain a large variety of allergen molecules and thus allow the simultaneous detection of allergic patients' antibody reactivity profiles towards each of the MeDALL is a European research program in which allergen microarray technology is used for the monitoring of the development of allergic disease in childhood, to draw a geographic map of the recognition of clinically relevant allergens in different populations and to establish reactivity profiles which are associated with and predict certain disease manifestations. We describe technical advances of the MeDALL allergen-chip regarding specificity, sensitivity and its ability to deliver test results which are close to in vivo reactivity. In addition, the usefulness and numerous advantages of allergen microarrays for allergy research, refined allergy diagnosis, monitoring of disease, of the effects of therapies, for improving the prescription of specific immunotherapy and for prevention are discussed.
Europe PMC Funders Group
BackgroundSensitization in early childhood may precede respiratory allergy in adolescence.MethodsIgE reactivity against 132 allergen molecules was evaluated using the MeDALL microarray in sera obtained from a random sample of 786 children at the age of 4, 8 and 16 years in a population based birth cohort (BAMSE). Symptoms were analyzed by questionnaire at ages 4, 8 and 16 years. Clinically and independent relevant allergen molecules accounting for ≥ 90% of IgE reactivities in sensitized individuals and at all time-points were identified as risk molecules and used to predict respiratory allergy. The data was replicated in the Manchester Asthma and Allergy Study (MAAS) birth cohort by studying IgE reactivity with the use of a commercial IgE microarray. Sera were obtained from children at the ages of 3, 5, 8 and 11 years (N = 248) and the outcome was studied at 11 years.FindingsIn the BAMSE cohort 4 risk molecules could be identified, i.e.: Ara h 1 (peanut), Bet v 1 (birch), Fel d 1 (cat), Phl p 1 (grass). For MAAS the corresponding number of molecules was 5: Der p 1 (dust mite), Der f 2 (dust mite), Phl p 1 (grass), Phl p 5 (grass), Fel d 1 (cat). In BAMSE, early IgE reactivity to ≥ 3 of 4 allergen molecules at four years predicted incident and persistent asthma and/or rhinitis at 16 years (87% and 95%, respectively). The corresponding proportions in the MAAS cohort at 16 years were 100% and 100%, respectively, for IgE reactivity to ≥ 3 of 5 risk molecules.InterpretationsIgE reactivity to a few allergen molecules early in life identifies children with a high risk of asthma and/or rhinitis at 16 years. These findings will be of importance for developing preventive strategies for asthma and rhinitis in children.
Many children diagnosed as wheat allergic have outgrown their allergy and are unnecessarily on a wheat-free diet. The levels of IgE-ab to wheat gluten-derived components correlated well with wheat challenge outcome and severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.