Purpose To investigate the efficacy and safety of irreversible electroporation (IRE) in the treatment of hepatic tumors not suitable for thermal ablation (radiofrequency ablation [RFA] or microwave ablation). Materials and Methods This was an institutional review board-approved prospective study in 29 patients (15 men, 14 women; mean age, 63 years ± 12 [standard deviation]) with 43 primary (n = 8) or secondary (n = 35) malignant liver tumors who underwent computed tomography (CT)-guided IRE. All target tumors were located immediately adjacent to major hepatic veins, portal veins, or both; thus, they were not considered suitable for RFA or microwave ablation. Patients underwent postinterventional CT and magnetic resonance (MR) imaging. Systematic follow-up MR imaging was performed for 24 months on average to assess complete ablation, intrahepatic tumor recurrence, and complications. The 95% confidence intervals (CIs) were determined for the rate of bile duct strictures, incomplete ablation, and tumor recurrence. Results Complete ablation was achieved in 40 (93%; 95% CI: 85, 100) of 43 target tumors, with a safety margin of 5-10 mm, and was confirmed at immediate postinterventional CT and MR imaging. In 13 (33%; 95% CI: 18, 47) of 40 completely ablated tumors, intrahepatic tumor recurrence was observed at 2-18 months. However, only two (15%; 95% CI: 0, 35) of these 13 tumors were observed within the ablation zone. In the remaining 11 (85%; 95% CI: 65, 100), tumor growth was observed alongside the needle tract. None of the two true local recurrences occurred at the site of the vessel. All adjacent vessels remained perfused at follow-up. Five (24%; 95% CI: 5, 39) of 21 patients with target tumors adjacent to portal veins developed mild to moderate cholestasis 2-6 weeks after IRE. Conclusion IRE is useful to avoid incomplete ablation secondary to heat-sink effects and damage to major blood vessels; however, needle tract seeding is observed in 26% of treated tumors, and IRE induces sufficient local heating to bile ducts in 24% of ablations. RSNA, 2017.
MR imaging is useful for the noninvasive work-up of lesions classified as BI-RADS category 4 at mammography or US and can help avoid 92% of unnecessary biopsies. The false-negative rate was 0% for all US findings and for all mammographic findings except pure clustered microcalcifications. Additional invasive cancers were identified in three women with false-positive findings from mammography and US.
Combining iron-loaded implants and MRI, we achieved mesh visualization for the first time in patients. For MRI protocol, we propose a combination of different gradient echo sequences and T2-weighted turbo spin-echo sequences: first gradient echo sequence for mesh configuration, T2wTSE for anatomy assessment, and GRE3 for evaluation of hernia coverage and mesh localization. Using our approach, MRI could become a noninvasive alternative to open surgical exploration if mesh-related complications were suspected.
ObjectivesPatients with hepatic metastases who are candidates for Y90-radioembolization (Y90-RE) usually have advanced tumor stages with involvement of both liver lobes. Per current guidelines, these patients have usually undergone several cycles of potentially hepatotoxic systemic chemotherapy before Y90-RE is at all considered, requiring split (lobar) treatment sessions to reduce hepatic toxicity. Assessing response to Y90-RE early, that is, already after the first lobar session, would be helpful to avoid an ineffective and potentially hepatotoxic second lobar treatment. We investigated the accuracy with which diffusion- weighted magnetic resonance imaging (DWI-MRI) and positron emission tomography/computed tomography (PET/CT) can provide this information.MethodsAn institutional review board–approved prospective intraindividual comparison trial on 35 patients who underwent fluorodeoxyglucose PET/CT and DWI-MRI within 6 weeks before and 6 weeks after Y90-RE to treat secondary-progressive liver metastases from solid cancers (20 colorectal, 13 breast, 2 other) was performed. An increase of minimal apparent diffusion coefficient (ADCmin) or decrease of maximum standard uptake value (SUVmax) by at least 30% was regarded as positive response. Long-term clinical and imaging follow-up was used to distinguish true- from false-response classifications.ResultsOn the basis of long-term follow-up, 23 (66%) of 35 patients responded to the Y90 treatment. No significant changes of metastases size or contrast enhancement were observable on pretreatment versus posttreatment CT or magnetic resonance images.However, overall SUVmax decreased from 8.0 ± 3.9 to 5.5 ± 2.2 (P < 0.0001), and ADCmin increased from 0.53 ± 0.13 × 10−3 mm2/s to 0.77 ± 0.26 × 10−3 mm2/s (P < 0.0001). Pretherapeutic versus posttherapeutic changes of ADCmin and SUVmax correlated moderately (r = −0.53). In 4 of the 35 patients (11%), metastases were fluorodeoxyglucose-negative such that no response assessment was possible by PET. In 25 (71%) of the 35 patients, response classification by PET and DWI-MRI was concordant; in 6 (17%) of the 35, it was discordant. In 5 of the 6 patients with discordant classifications, follow-up confirmed diagnoses made by DWI. The positive predictive value to predict response was 22 (96%) of 23 for MRI and 15 (88%) of 17 for PET. The negative predictive value to predict absence was 11 (92%) of 12 for MRI and 10 (56%) of 18 for PET. Sensitivity for detecting response was significantly higher for MRI (96%; 22/23) than for PET (65%; 15/23) (P < 0.02).ConclusionsDiffusion-weighted magnetic resonance imaging appears superior to PET/CT for early response assessment in patients with hepatic metastases of common solid tumors. It may be used in between lobar treatment sessions to guide further management of patients who undergo Y90-RE for hepatic metastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.