This review summarizes the advancement on sintered composites based on tungsten–copper (W–Cu) reinforced with graphene (Gr) or its derivative such as reduced Gr oxide (rGO) for use as electrical contacts applied in switching devices. Main synthesis approaches for preparing Gr or rGO reinforced W–Cu composite powders and their consolidations by using various powder metallurgy techniques are presented. The nature of the initial materials, synthesis conditions, processing parameters, and the relevant findings are disclosed and discussed. The improvement in microstructure and technical characteristics like density, electrical conductivity, hardness, coefficient of friction, wear rate, and arc ablation behavior of W–Cu–Gr/rGO composites are highlighted comparatively with that of unreinforced composites. This review reveals an insight into a novel class of composites as candidates for electrical contact applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.