We initiate the cryptographic study of order-preserving symmetric encryption (OPE), a primitive suggested in the database community by Agrawal et al. (SIGMOD '04) for allowing efficient range queries on encrypted data. Interestingly, we first show that a straightforward relaxation of standard security notions for encryption such as indistinguishability against chosen-plaintext attack (IND-CPA) is unachievable by a practical OPE scheme. Instead, we propose a security notion in the spirit of pseudorandom functions (PRFs) and related primitives asking that an OPE scheme look "as-random-as-possible" subject to the order-preserving constraint. We then design an efficient OPE scheme and prove its security under our notion based on pseudorandomness of an underlying blockcipher. Our construction is based on a natural relation we uncover between a random order-preserving function and the hypergeometric probability distribution. In particular, it makes black-box use of an efficient sampling algorithm for the latter.
Abstract. We propose a robust proactive threshold signature scheme, a multisignature scheme and a blind signature scheme which work in any Gap Diffie-Hellman (GDH) group (where the Computational DiffieHellman problem is hard but the Decisional Diffie-Hellman problem is easy). Our constructions are based on the recently proposed GDH signature scheme of Boneh et al. [8]. Due to the instrumental structure of GDH groups and of the base scheme, it turns out that most of our constructions are simpler, more efficient and have more useful properties than similar existing constructions. We support all the proposed schemes with proofs under the appropriate computational assumptions, using the corresponding notions of security.
Abstract. We present as-strong-as-possible definitions of privacy, and constructions achieving them, for public-key encryption schemes where the encryption algorithm is deterministic. We obtain as a consequence database encryption methods that permit fast (i.e. sub-linear, and in fact logarithmic, time) search while provably providing privacy that is as strong as possible subject to this fast search constraint. One of our constructs, called RSA-DOAEP, has the added feature of being length preserving, so that it is the first example of a public-key cipher. We generalize this to obtain a notion of efficiently-searchable encryption schemes which permit more flexible privacy to search-time trade-offs via a technique called bucketization. Our results answer much-asked questions in the database community and provide foundations for work done there.
Identity-based encryption (IBE) is an exciting alternative to public-key encryption, as IBE eliminates the need for a Public Key Infrastructure (PKI). Any setting, PKI-or identity-based, must provide a means to revoke users from the system. Efficient revocation is a well-studied problem in the traditional PKI setting. However in the setting of IBE, there has been little work on studying the revocation mechanisms. The most practical solution requires the senders to also use time periods when encrypting, and all the receivers (regardless of whether their keys have been compromised or not) to update their private keys regularly by contacting the trusted authority. We note that this solution does not scale well -as the number of users increases, the work on key updates becomes a bottleneck. We propose an IBE scheme that significantly improves key-update efficiency on the side of the trusted party (from linear to logarithmic in the number of users), while staying efficient for the users. Our scheme builds on the ideas of the Fuzzy IBE primitive and binary tree data structure, and is provably secure.
Abstract.We further the study of order-preserving symmetric encryption (OPE), a primitive for allowing efficient range queries on encrypted data, recently initiated (from a cryptographic perspective) by Boldyreva et al. (Eurocrypt '09). First, we address the open problem of characterizing what encryption via a random order-preserving function (ROPF) leaks about underlying data (ROPF being the "ideal object" in the security definition, POPF, satisfied by their scheme.) In particular, we show that, for a database of randomly distributed plaintexts and appropriate choice of parameters, ROPF encryption leaks neither the precise value of any plaintext nor the precise distance between any two of them. The analysis here is quite technically non-trivial and introduces useful new techniques. On the other hand, we also show that ROPF encryption does leak both the value of any plaintext as well as the distance between any two plaintexts to within a range of possibilities roughly the square root of the domain size. We then study schemes that are not order-preserving, but which nevertheless allow efficient range queries and achieve security notions stronger than POPF. In a setting where the entire database is known in advance of key-generation (considered in several prior works), we show that recent constructions of "monotone minimal perfect hash functions" allow to efficiently achieve (an adaptation of) the notion of IND-O(rdered) CPA also considered by Boldyreva et al., which asks that only the order relations among the plaintexts is leaked. Finally, we introduce modular order-preserving encryption (MOPE), in which the scheme of Boldyreva et al. is prepended with a shift cipher. MOPE improves the security of OPE in a sense, as it does not leak any information about plaintext location. We clarify that our work should not be interpreted as saying the original scheme of Boldyreva et al., or the variants that we introduce, are "secure" or "insecure." Rather, the goal of this line of research is to help practitioners decide whether the options provide a suitable security-functionality tradeoff for a given application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.