For the fabrication of customized silicone rubber based implants, e.g. cochlear implants or electrocortical grid arrays, it is required to develop high speed curing systems, which vulcanize the silicone rubber before it runs due to a heating related viscosity drop. Therefore, we present an infrared radiation based cross-linking approach for the 3D-printing of silicone rubber bulk and carbon nanotube based silicone rubber electrode materials. Composite materials were cured in less than 120 s and material interfaces were evaluated with scanning electron microscopy. Furthermore, curing related changes in the mechanical and cell-biological behaviour were investigated with tensile and WST-1 cell biocompatibility tests. The infrared absorption properties of the silicone rubber materials were analysed with fourier transform infrared spectroscopy in transmission and attenuated total reflection mode. The heat flux was calculated by using the FTIR data, emissivity data from the infrared source manufacturer and the geometrical view factor of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.