Embedded sensors of the smartphones offer opportunities for granular, patient-autonomous measurements of neurological dysfunctions for disease identification, management, and for drug development. We hypothesized that aggregating data from two simple smartphone tests of fine finger movements with differing contribution of specific neurological domains (i.e., strength & cerebellar functions, vision, and reaction time) will allow establishment of secondary outcomes that reflect domain-specific deficit. This hypothesis was tested by assessing correlations of smartphone-derived outcomes with relevant parts of neurological examination in multiple sclerosis (MS) patients. We developed MS test suite on Android platform, consisting of several simple functional tests. This paper compares cross-sectional and longitudinal performance of Finger tapping and Balloon popping tests by 76 MS patients and 19 healthy volunteers (HV). The primary outcomes of smartphone tests, the average number of taps (per two 10-s intervals) and the average number of pops (per two 26-s intervals) differentiated MS from HV with similar power to traditional, investigator-administered test of fine finger movements, 9-hole peg test (9HPT). Additionally, the secondary outcomes identified patients with predominant cerebellar dysfunction, motor fatigue and poor eye-hand coordination and/or reaction time, as evidenced by significant correlations between these derived outcomes and relevant parts of neurological examination. The intra-individual variance in longitudinal sampling was low. In the time necessary for performing 9HPT, smartphone tests provide much richer and reliable measurements of several distinct neurological functions. These data suggest that combing more creatively-construed smartphone apps may one day recreate the entire neurological examination.
Nanoscale pulldown (NanoSPD) miniaturizes the concept of affinity pulldown to detect protein–protein interactions in live cells. NanoSPD hijacks the myosin-based intracellular trafficking machinery to assess interactions under physiological buffer conditions and is microscopy-based, allowing for sensitive detection and quantification.
Our long-term goal is to employ smartphone-embedded sensors to measure various neurological functions in a patient-autonomous manner. The interim goal is to develop simple smartphone tests (apps) and evaluate the clinical utility of these tests by selecting optimal outcomes that correlate well with clinician-measured disability in different neurological domains. In this paper, we used prospectively-acquired data from 112 multiple sclerosis (MS) patients and 15 healthy volunteers (HV) to assess the performance and optimize outcomes of a Level Test. The goal of the test is to tilt the smartphone so that a free-rolling ball travels to and remains in the center of the screen. An accelerometer detects tilting and records the coordinates of the ball at set time intervals. From this data, we derived five features: path length traveled, time spent in the center of the screen, average distance from the center, average speed while in the center, and number of direction changes underwent by the ball. Time in center proved to be the most sensitive feature to differentiate MS patients from HV and had the strongest correlations with clinician-derived scales. Its superiority was validated in an independent validation cohort of 29 MS patients. A linear combination of different Level features failed to outperform time in center in an independent validation cohort. Limited longitudinal data demonstrated that the Level features were relatively stable intra-individually within 4 months, without definitive evidence of learning. In contrast to previously developed smartphone tests that predominantly measure motoric functions, Level features correlated strongly with reaction time and moderately with cerebellar functions and proprioception, validating its complementary clinical value in the MS app suite. The Level Test measures neurological disability in several domains in two independent cross-sectional cohorts (original and validation). An ongoing longitudinal cohort further investigates whether patient-autonomous collection of granular functional data allows measurement of patient-specific trajectories of disability progression to better guide treatment decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.