When considering the development pathway for a genetically modified cell therapy product, it is critically important that the product is engineered consistent with its intended human use. For scientists looking to develop and commercialize a new technology, the decision to select a genetic modification method depends on several practical considerations. Whichever path is chosen, the developer must understand the key risks and potential mitigations of the cell engineering approach. The developer should also understand the clinical implications: permanent/memory establishment versus transient expression, and clinical manufacturing considerations when dealing with transplantation of genetically engineered cells. This review covers important topics for mapping out a strategy for developers of new cell-based therapeutics. Biological, technological, manufacturing, and clinical considerations are all presented to map out development lanes for the initiation and risk management of new gene-based cell therapeutic products for human use.
Background
Mesenchymal stromal cells (MSC) demonstrate innate and regulatory immunologic functions and have been widely explored for cell therapy applications. Mechanisms by which MSCs achieve therapeutic effects are theorized, though appropriate dosing and duration of these mechanisms in vivo warrant deeper investigation. One, rapid immunosuppressive function of MSCs is through ectoenzyme expression of CD73 and CD39 which cooperatively hydrolyze inflammatory, extracellular adenosine triphosphate (ATP) to anti-inflammatory adenosine. Extracellular ATP has a key role in autoimmune and inflammatory diseases, which administered MSCs have the potential to modulate in a timescale that is befitting of shorter acting therapeutic function.
Methods
In vitro experiments were performed to determine the hydrolysis rates of ATP by MSCs. Through kinetic modeling from experimental results, the rate at which a single cell can metabolize ATP was determined. Based on these rates, the ability of MSCs to downregulate inflammatory signaling pathways was prospectively validated using model system parameters with respect to two different mechanisms: extracellular ATP stimulates lymphocytes to suppress proliferation and induce apoptosis and with co-stimulation, it stimulates monocytes to release pro-inflammatory IL-1β. MSCs were co-cultured with immune cells using transwell inserts and compared to immune cell only groups.
Results
Hydrolysis of ATP was efficiently modeled by first-order enzyme kinetics. For in vitro culture, the rate at which a single cell can hydrolyize ATP is 8.9 nmol/min. In the presence of extracellular ATP, cocultures of MSCs reduced cytotoxicity and allows for proliferation of lymphocytes while limiting IL-1β secretion from monocytes.
Conclusions
Such use of these models may allow for better dosing predictions for MSCs to be used therapeutically for chronic inflammatory diseases such as rheumatoid arthritis, diabetes, pancreatitis, and other systemic inflammatory response syndromes. For the first time, the effect of MSCs on ATP hydrolysis in immune cell response is quantitatively analyzed on a cell-molecule basis by modeling the hydrolysis as an enzyme–substrate reaction. The results also give insight into MSCs’ dynamic response mechanisms to ameliorate effects of extracellular ATP whether it be through positive or negative regulation.
Electronic supplementary material
The online version of this article (10.1186/s12967-019-2000-6) contains supplementary material, which is available to authorized users.
An engineered, circulating cancer cell line secreting a luciferase reporter captures constitutive and circadian clock‐driven transcription dynamics. This was observed in vitro in a continuous flow cell culture system, and in vivo detecting circadian luciferase plasma activity. This technique is rapid, noninvasive and can aid in investigating relationships between cancer cell signaling and behavior, such as diet or sleep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.