To explore the distinct genotypic and phenotypic states of melanoma tumors we applied single-cell RNA-seq to 4,645 single cells isolated from 19 patients, profiling malignant, immune, stromal and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that “MITF-high” tumors also contained “AXL-high” tumor cells. Single-cell analyses suggested distinct tumor micro-environmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and to clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single cell genomics offers insights with implications for both targeted and immune therapies.
Dendritic cells (DCs) and monocytes play a central role in pathogen sensing, phagocytosis and antigen presentation and consist of multiple specialized subtypes. However, their identities and interrelationships are not fully understood. Using unbiased single-cell RNA sequencing (RNA-seq) of ~2400 cells, we identified six human DCs and four monocyte subtypes in human blood. Our study reveals: a new DC subset that shares properties with plasmacytoid DCs (pDCs) but potently activates T cells, thus redefining pDCs; a new subdivision within the CD1C+ subset of DCs; the relationship between blastic plasmacytoid DC neoplasia cells and healthy DCs; and circulating progenitor of conventional DCs (cDCs). Our revised taxonomy will enable more accurate functional and developmental analyses as well as immune monitoring in health and disease.
SUMMARY
Treatment of cancer has been revolutionized by immune checkpoint blockade
therapies. Despite the high rate of response in advanced melanoma, the majority
of patients succumb to disease. To identify factors associated with success or
failure of checkpoint therapy, we profiled transcriptomes of 16,291 individual
immune cells from 48 tumor samples of melanoma patients treated with checkpoint
inhibitors. Two distinct states of CD8+ T cells were defined by
clustering, and associated with patient tumor regression or progression. A
single transcription factor, TCF7, was visualized within
CD8+ T cells in fixed tumor samples and predicted positive
clinical outcome in an independent cohort of checkpoint-treated patients. We
delineated the epigenetic landscape and clonality of these T cell states, and
demonstrated enhanced anti-tumor immunity by targeting novel combinations of
factors in exhausted cells. Our study of immune cell transcriptomes from tumors
demonstrates a strategy for identifying predictors, mechanisms and targets for
enhancing checkpoint immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.