Purpose To assess the relationship between radiation dose and change in a set of mathematical intensity- and texture-based features and to determine the ability of texture analysis to identify patients who develop radiation pneumonitis (RP). Methods and Materials A total of 106 patients who received radiation therapy (RT) for esophageal cancer were retrospectively identified under institutional review board approval. For each patient, diagnostic computed tomography (CT) scans were acquired before (0–168 days) and after (5–120 days) RT, and a treatment planning CT scan with an associated dose map was obtained. 32- × 32-pixel regions of interest (ROIs) were randomly identified in the lungs of each pre-RT scan. ROIs were subsequently mapped to the post-RT scan and the planning scan dose map by using deformable image registration. The changes in 20 feature values (ΔFV) between pre- and post-RT scan ROIs were calculated. Regression modeling and analysis of variance were used to test the relationships between ΔFV, mean ROI dose, and development of grade ≥2 RP. Area under the receiver operating characteristic curve (AUC) was calculated to determine each feature’s ability to distinguish between patients with and those without RP. A classifier was constructed to determine whether 2- or 3-feature combinations could improve RP distinction. Results For all 20 features, a significant ΔFV was observed with increasing radiation dose. Twelve features changed significantly for patients with RP. Individual texture features could discriminate between patients with and those without RP with moderate performance (AUCs from 0.49 to 0.78). Using multiple features in a classifier, AUC increased significantly (0.59–0.84). Conclusions A relationship between dose and change in a set of image-based features was observed. For 12 features, ΔFV was significantly related to RP development. This study demonstrated the ability of radiomics to provide a quantitative, individualized measurement of patient lung tissue reaction to RT and assess RP development.
The literature indicates that attachment style is associated with social anxiety. Clinicians may wish to consider attachment theory when working clinically with this population. In the future, it may be useful to target the processes that mediate the relationship between attachment and social anxiety.
Purpose: The aim of this study was to quantify the effect of four image registration methods on lung texture features extracted from serial computed tomography (CT) scans obtained from healthy human subjects. Methods: Two chest CT scans acquired at different time points were collected retrospectively for each of 27 patients. Following automated lung segmentation, each follow-up CT scan was registered to the baseline scan using four algorithms: (1) rigid, (2) affine, (3) B-splines deformable, and (4) demons deformable. The registration accuracy for each scan pair was evaluated by measuring the Euclidean distance between 150 identified landmarks. On average, 1432 spatially matched 32 × 32-pixel region-of-interest (ROI) pairs were automatically extracted from each scan pair. Firstorder, fractal, Fourier, Laws' filter, and gray-level co-occurrence matrix texture features were calculated in each ROI, for a total of 140 features. Agreement between baseline and follow-up scan ROI feature values was assessed by Bland-Altman analysis for each feature; the range spanned by the 95% limits of agreement of feature value differences was calculated and normalized by the average feature value to obtain the normalized range of agreement (nRoA). Features with small nRoA were considered "registration-stable." The normalized bias for each feature was calculated from the feature value differences between baseline and follow-up scans averaged across all ROIs in every patient. Because patients had "normal" chest CT scans, minimal change in texture feature values between scan pairs was anticipated, with the expectation of small bias and narrow limits of agreement. Results: Registration with demons reduced the Euclidean distance between landmarks such that only 9% of landmarks were separated by ≥1 mm, compared with rigid (98%), affine (95%), and B-splines (90%). Ninety-nine of the 140 (71%) features analyzed yielded nRoA > 50% for all registration methods, indicating that the majority of feature values were perturbed following registration. Nineteen of the features (14%) had nRoA < 15% following demons registration, indicating relative feature value stability. Student's t-tests showed that the nRoA of these 19 features was significantly larger when rigid, affine, or B-splines registration methods were used compared with demons registration. Demons registration yielded greater normalized bias in feature value change than B-splines registration, though this difference was not significant (p = 0.15). Conclusions: Demons registration provided higher spatial accuracy between matched anatomic landmarks in serial CT scans than rigid, affine, or B-splines algorithms. Texture feature changes calculated in healthy lung tissue from serial CT scans were smaller following demons registration compared with all other algorithms. Though registration altered the values of the majority of texture features, 19 features remained relatively stable after demons registration, indicating their potential for detecting pathologic change in serial CT scans. Combi...
Purpose To determine whether the addition of standardized uptake value (SUV) from PET scans to CT lung texture features could improve a radiomics-based model of radiation pneumonitis (RP) diagnosis in patients undergoing radiotherapy. Methods and Materials Anonymized data from 96 esophageal cancer patients (18 RP-positive cases of Grade ≥ 2) were collected including pre-therapy PET/CT scans, pre-/post-therapy diagnostic CT scans and RP status. Twenty texture features (first-order, fractal, Laws’ filter and gray-level co-occurrence matrix) were calculated from diagnostic CT scans and compared in anatomically matched regions of the lung. Classifier performance (texture, SUV, or combination) was assessed by calculating the area under the receiver operating characteristic curve (AUC). For each texture feature, logistic regression classifiers consisting of the average change in texture feature value and the pre-therapy SUV standard deviation (SUVSD) were created and compared with the texture feature as a lone classifier using ANOVA with correction for multiple comparisons (p < 0.0025). Results While clinical parameters (mean lung dose, smoking history, tumor location) were not significantly different among patients with and without symptomatic RP, SUV and texture parameters were significantly associated with RP status. AUC for single-texture-feature classifiers alone ranged from 0.58–0.81 and 0.53–0.71 in high-dose (≥ 30 Gy) and low-dose (< 10 Gy) regions of the lungs, respectively. AUC for SUVSD alone was 0.69 (95% confidence interval: 0.54–0.83). Adding SUVSD into a logistic regression model significantly increased the mean AUC across 11–18 texture features by 0.08, 0.06, 0.04 in the low-, medium-, and high-dose regions, respectively. Conclusions Addition of SUVSD to a single texture feature improves classifier performance on average, but the improvement is smaller in magnitude when SUVSD is added to an already effective classifier using texture alone. These findings demonstrate the potential for more accurate assessment of RP using information from multiple imaging modalities.
This study examines the correlation between the radiologist-defined severity of normal tissue damage following radiation therapy (RT) for lung cancer treatment and a set of mathematical descriptors of computed tomography (CT) scan texture (“texture features”). A pre-therapy CT scan and a post-therapy (median: 33 days) CT scan were retrospectively collected under IRB approval for each of 25 patients who underwent definitive RT (median dose: 66 Gy). Sixty regions of interest (ROIs) were automatically identified in the non-cancerous lung tissue of each post-therapy scan. A radiologist compared post-therapy scan ROIs with pre-therapy scans and categorized each as containing no abnormality, mild abnormality, moderate abnormality, or severe abnormality. Twenty texture features that characterize gray-level intensity, region morphology, and gray-level distribution were calculated in post-therapy scan ROIs and compared with anatomically matched ROIs in the pre-therapy scan. Linear regression and receiver operating characteristic (ROC) analysis were used to compare the percent feature value change (ΔFV) between ROIs at each category of visible radiation damage. Most ROIs contained no (65%) or mild abnormality (30%). ROIs with moderate (3%) or severe (2%) abnormalities were observed in 9 patients. For 19 of 20 features, ΔFV was significantly different among severity levels. For 12 features, significant differences were observed at every level. Compared with regions with no abnormalities, ΔFV for these 12 features increased, on average, by 1.5%, 12%, and 30%, respectively, for mild, moderate, and severe abnormalitites. Area under the ROC curve was largest when comparing ΔFV in the highest severity level with the remaining three categories (mean AUC across features: 0.84). In conclusion, 19 features that characterized the severity of radiologic changes from pre-therapy scans were identified. These features may be used in future studies to quantify acute normal lung tissue damage following RT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.