Patients with human papillomavirus associated (HPV+) head and neck cancer (HNC) demonstrate significantly improved survival outcome compared to those with HPV− negative (HPV−) tumors. Published data examining this difference offers conflicting results to date. We systematically investigated the radiation sensitivity of all available validated HPV+ HNC cell lines and a series of HPV− HNC cell lines using in vitro and in vivo techniques. HPV+ HNCs exhibited greater intrinsic radiation sensitivity (average SF2 HPV− 0.59 vs. HPV+ 0.22, p<0.0001), corresponding with a prolonged G2/M cell cycle arrest and increased apoptosis following radiation exposure (percent change 0% vs. 85%, p=0.002). A genome-wide microarray was used to compare gene-expression 24 hours following radiation between HPV+ and HPV− cell lines. Multiple genes in TP53 pathway were upregulated in HPV+ cells (Z score 4.90), including a 4.6 fold increase in TP53 (p<0.0001). Using immortalized human tonsillar epithelial cells, increased radiation sensitivity was seen in cell expressing HPV-16 E6 despite the effect of E6 to degrade p53. This suggested that low levels of normally functioning p53 in HPV+ HNC cells could be activated by radiation, leading to cell death. Consistent with this, more complete knockdown of TP53 by siRNA resulted in radiation resistance. These results provide clear evidence, and a supporting mechanism, for increased radiation sensitivity in HPV+ HNC relative to HPV− HNC. This issue is under active investigation in a series of clinical trials attempting to de-escalate radiation (and chemotherapy) in selected patients with HPV+ HNC in light of their favorable overall survival outcome.
Purpose To develop a clinically relevant model system to study head and neck squamous cell carcinoma (HNSCC), we have established and characterized a direct-from-patient, tumorgraft model of Human Papillomavirus (HPV)-positive and HPV-negative cancers. Experimental Design Patients with newly diagnosed or recurrent HNSCC were consented for donation of tumor specimens. Surgically obtained tissue was implanted subcutaneously into immunodeficient mice. During subsequent passages, both formalin-fixed/paraffin embedded as well as flash frozen tissues were harvested. Tumors were analyzed for a variety of relevant tumor markers. Tumor growth rates and response to radiation, cisplatin, or cetuximab were assessed and early passage cell strains were developed for rapid testing of drug sensitivity. Results Tumorgrafts have been established in 22 of 26 patients to date. Significant diversity in tumorgraft tumor differentiation was observed with good agreement in degree of differentiation between patient tumor and tumorgraft (Kappa 0.72). Six tumorgrafts were HPV-positive on the basis of p16 staining. A strong inverse correlation between tumorgraft p16 and p53 or Rb was identified (Spearman correlations p=0.085 and p=0.002, respectively). Significant growth inhibition of representative tumorgrafts was demonstrated with cisplatin, cetuximab or radiation treatment delivered over a two-week period. Early passage cell strains showed high consistency in response to cancer therapy between tumorgraft and cell strain. Conclusions We have established a robust human tumorgraft model system for investigating HPV-positive and HPV-negative HNSCC. These tumorgrafts show strong correlation with the original tumor specimens and provide a powerful resource for investigating mechanisms of therapeutic response as well as preclinical testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.