Oxygen fugacity is a measure of rock oxidation that influences planetary structure and evolution. Most rocky bodies in the Solar System formed at oxygen fugacities approximately five orders of magnitude higher than a hydrogen-rich gas of solar composition. It is unclear whether this oxidation of rocks in the Solar System is typical among other planetary systems. We exploit the elemental abundances observed in six white dwarfs polluted by the accretion of rocky bodies to determine the fraction of oxidized iron in those extrasolar rocky bodies and therefore their oxygen fugacities. The results are consistent with the oxygen fugacities of Earth, Mars, and typical asteroids in the Solar System, suggesting that at least some rocky exoplanets are geophysically and geochemically similar to Earth.One Sentence Summary: Elemental abundances from white dwarfs are used to calculate the Earth-like oxidation states of extrasolar rocks accreted by the stars.Main Text: Estimating the composition of extrasolar planets from host-star abundances or from planet mass-radius relationships is difficult and unreliable (1, 2). The elemental abundances in some white dwarfs (WDs) provide an alternative, more direct approach for determining the composition of extrasolar rocks. White dwarfs are the remnant cores left behind when a star ejects its hydrogen-rich outer layers following the red giant phase. These remnant cores are ~ 0.5 solar masses ( ) and about the same radius as Earth, are no longer powered by fusion, and slowly cool over time. Because of their high densities, and thus strong gravitational fields, elements heavier than helium rapidly sink below their surfaces, becoming unobservable.Nonetheless, spectroscopic studies show that up to half of WDs with effective temperatures M ⊙
Astronomers have discovered thousands of planets outside the solar system 1 , most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by the star 2 , but more distant planets can survive this phase and remain in orbit around the white dwarf 3,4 . Some white dwarfs show evidence for rocky material floating in their atmospheres 5 , in warm debris disks [6][7][8][9] , or orbiting very closely [10][11][12] , which has been interpreted as the debris of rocky planets that were scattered inward and tidally disrupted 13 . Recently, the discovery of a gaseous debris disk with a composition similar to ice giant planets 14 demonstrated that massive planets might also find their way into tight orbits around white dwarfs, but it is unclear whether the planets can survive the journey. So far, the detection of intact planets in close orbits around white dwarfs has remained elusive. Here, we report the discovery of a giant planet candidate transiting the white dwarf WD 1856+534 (TIC 267574918) every 1.4 days. The planet candidate is roughly the same size as Jupiter and is no more than 14 times as massive (with 95% confidence). Other cases of white dwarfs with close brown dwarf or stellar companions are explained as the consequence of common-envelope evolution, wherein the original orbit is enveloped during the red-giant phase and shrinks due to friction. In this case, though, the low mass and relatively long orbital period of the planet candidate make common-envelope evolution less likely. Instead, the WD 1856+534 system seems to demonstrate that giant planets can be scattered into tight orbits without being tidally disrupted, and motivates searches for smaller transiting planets around white dwarfs. WD 1856+534 (hereafter, WD 1856 for brevity) is located 25 parsecs away in a visual triple star system. It has an effective temperature of 4710 ± 60 Kelvin and became a white dwarf 5.9 ± 0.5 billion years ago, based on theoretical models for how white dwarfs cool over time. The total system age, including the star's main sequence lifetime, must be older. Table 1 gives the other key parameters of the star. WD 1856 is one of thousands of white dwarfs that was targeted for observations with NASA's Transiting Exoplanet Survey Satellite (TESS ), in order to search for any periodic dimming events caused by planetary transits. A statistically significant transit-like event was detected by the TESS Science Processing Operations Center (SPOC) pipeline based
Optical spectroscopic observations of white dwarf stars selected from catalogs based on the Gaia DR2 database reveal nine new gaseous debris disks that orbit single white dwarf stars, about a factor of 2 increase over the previously known sample. For each source we present gas emission lines identified and basic stellar parameters, including abundances for lines seen with low-resolution spectroscopy. Principle discoveries include (1) the coolest white dwarf (T eff ≈ 12,720 K) with a gas disk; this star, WD0145+234, has been reported to have undergone a recent infrared outburst; (2) co-location in velocity space of gaseous emission from multiple elements, suggesting that different elements are well mixed; (3) highly asymmetric emission structures toward SDSS J0006+2858, and possibly asymmetric structures for two other systems; (4) an overall sample composed of approximately 25% DB and 75% DA white dwarfs, consistent with the overall distribution of primary atmospheric types found in the field population; and (5) never-before-seen emission lines from Na in the spectra of Gaia J0611−6931, semi-forbidden Mg, Ca, and Fe lines toward WD 0842+572, and Si in both stars. The currently known sample of gaseous debris disk systems is significantly skewed toward northern hemisphere stars, suggesting a dozen or so emission line stars are waiting to be found in the southern hemisphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.