The secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1) was first described as a key player in pathogenic ocular neovascularization almost a decade ago. Since then, an increasing number of publications have reported the involvement of LRG1 in multiple human conditions including cancer, diabetes, cardiovascular disease, neurological disease, and inflammatory disorders. The purpose of this review is to provide, for the first time, a comprehensive overview of the LRG1 literature considering its role in health and disease. Although LRG1 is constitutively expressed by hepatocytes and neutrophils, Lrg1−/− mice show no overt phenotypic abnormality suggesting that LRG1 is essentially redundant in development and homeostasis. However, emerging data are challenging this view by suggesting a novel role for LRG1 in innate immunity and preservation of tissue integrity. While our understanding of beneficial LRG1 functions in physiology remains limited, a consistent body of evidence shows that, in response to various inflammatory stimuli, LRG1 expression is induced and directly contributes to disease pathogenesis. Its potential role as a biomarker for the diagnosis, prognosis and monitoring of multiple conditions is widely discussed while dissecting the mechanisms underlying LRG1 pathogenic functions. Emphasis is given to the role that LRG1 plays as a vasculopathic factor where it disrupts the cellular interactions normally required for the formation and maintenance of mature vessels, thereby indirectly contributing to the establishment of a highly hypoxic and immunosuppressive microenvironment. In addition, LRG1 has also been reported to affect other cell types (including epithelial, immune, mesenchymal and cancer cells) mostly by modulating the TGFβ signalling pathway in a context-dependent manner. Crucially, animal studies have shown that LRG1 inhibition, through gene deletion or a function-blocking antibody, is sufficient to attenuate disease progression. In view of this, and taking into consideration its role as an upstream modifier of TGFβ signalling, LRG1 is suggested as a potentially important therapeutic target. While further investigations are needed to fill gaps in our current understanding of LRG1 function, the studies reviewed here confirm LRG1 as a pleiotropic and pathogenic signalling molecule providing a strong rationale for its use in the clinic as a biomarker and therapeutic target.
CRT and age of patients have prognostic value in bevacizumab therapy of ME due to CRVO. CRVO patients who benefit from therapy are significantly younger and have a lower CRT at baseline than patients with persisting ME. In BRVO patients, no predictive factors for effectiveness of bevacizumab therapy could be observed.
Anatomic and functional improvement following intravitreal bevacizumab injections suggest that vascular endothelial growth factor (VEGF) may be involved in fluid leakage in patients with chronic CSC. The results suggest a possible role for anti-VEGF agents in the treatment of chronic CSC. Further evaluation of intravitreal bevacizumab for chronic CSC in controlled randomized studies is warranted.
Patients with retinal vein occlusion benefit from treatment with bevacizumab. Favourable long-term results without necessity of further injections were achieved in 33% and 15% of CRVO and BRVO patients respectively. The remaining patients needed repeated injections to treat ME recurrences. However, one third of the CRVO/BRVO patients did not improve in VA, and further injections might be discontinued in these patients.
Pathological angiogenesis contributes to morbidity in a number of diseases including cancer, diabetic retinopathy and the neovascular form of age-related macular degeneration, leading to significant efforts to develop effective anti-angiogenic therapeutics for these conditions. The field is dominated by inhibitors of vascular endothelial growth factor (VEGF), yet angiogenesis can also be driven and modified by other factors. We have previously demonstrated that leucine-rich alpha-2-glycoprotein 1 (LRG1) contributes to abnormal vessel growth by activating a TGFß switch. Here we report the development and characterisation of a function-blocking fully humanised IgG4 and its Fab fragment, that bind to LRG1 with high affinity and specificity and inhibit vascular leakage in the mouse model of laser-induced choroidal neovascularisation. In summary, we have developed a therapeutic antibody that targets a VEGF-independent signalling axis, which may be effective in a number of conditions either as monotherapy or in combination with other vascular targeted therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.