BackgroundNon-communicable diseases (NCDs) contribute greatly to morbidity and mortality in low-income and middle-income countries (LMICs). Community health workers (CHWs) may improve disease control and medication adherence among patients with NCDs in LMICs, but data are lacking. We assessed the impact of a CHW-led intervention on disease control and adherence among patients with diabetes and/or hypertension in Chiapas, Mexico.MethodsWe conducted a prospective observational study among adult patients with diabetes and/or hypertension, in the context of a stepped-wedge roll-out of a CHW-led intervention. We measured self-reported adherence to medications, blood pressure and haemoglobin A1c at baseline and every 3 months, timed just prior to expansion of the intervention to a new community. We conducted individual-level mixed effects analyses of study data, adjusting for time and clustering by patient and community.FindingsWe analysed 108 patients. The CHW-led intervention was associated with a twofold increase in the odds of disease control (OR 2.04, 95% CI 1.15 to 3.62). It was also associated with optimal adherence assessed by 30-day recall (OR 1.86; 95% CI 1.15 to 3.02) and a positive self-assessment of adherence behaviour (OR 2.29; 95% CI 1.26 to 4.15), but not by 5-day recall.InterpretationA CHW-led adherence intervention was associated with disease control and adherence among adults with diabetes and/or hypertension. This study supports a role of CHWs in supplementing comprehensive primary care for patients with NCDs in LMICs.Trial registration numberNCT02549495.
ObjectiveMyositis is associated with muscle-targeted inflammation and is observed in some Treg cell–deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts.MethodsFoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)–null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1–null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells.ResultsFoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis.ConclusionThese data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity.
Systemic lupus erythematosus (SLE) is a prototypic, inflammatory autoimmune disease characterized by significant gender bias. Previous studies have established a role for hormones in SLE pathogenesis, including the sex hormone estrogen. Estrogen regulates gene expression by translocating estrogen receptors (ER) α and β into the nucleus where they induce transcription by binding to estrogen response elements (EREs) of target genes. The ZAS3 locus encodes a signaling and transcriptional molecule involved in regulating inflammatory responses. We show that ZAS3 is significantly up-regulated in SLE patients at both the protein and mRNA levels in peripheral blood mononuclear cells (PBMCs). Furthermore, estrogen stimulates the expression of ZAS3 in vitro in several leukocyte and breast cancer cell lines of both human and murine origin. In vivo estrogen treatment mediates induction of tissue specific ZAS3 expression in several lymphoid organs in mice. Estrogen stimulation also significantly up-regulates ZAS3 expression in primary PBMCs, while treatment with testosterone has no effect. Mechanistically, estrogen induces differential ERα binding to putative EREs within the ZAS3 gene and ERα knockdown with siRNA prevents estrogen induced ZAS3 up-regulation. In contrast, siRNA targeting IFNα has no effect. These data demonstrate that ZAS3 expression is directly regulated by estrogen and that ZAS3 is overexpressed in lupus. Since ZAS3 has been shown to regulate inflammatory pathways, its up-regulation by estrogen could play a critical role in female-biased autoimmune disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.