Pristine graphene is the strongest material ever measured. However, large-area graphene films produced by means of chemical vapor deposition (CVD) are polycrystalline and thus contain grain boundaries that can potentially weaken the material. We combined structural characterization by means of transmission electron microscopy with nanoindentation in order to study the mechanical properties of CVD-graphene films with different grain sizes. We show that the elastic stiffness of CVD-graphene is identical to that of pristine graphene if postprocessing steps avoid damage or rippling. Its strength is only slightly reduced despite the existence of grain boundaries. Indentation tests directly on grain boundaries confirm that they are almost as strong as pristine. Graphene films consisting entirely of well-stitched grain boundaries can retain ultrahigh strength, which is critical for a large variety of applications, such as flexible electronics and strengthening components.
The dynamic system that is the bipedal body in motion is of interest to engineers, clinicians and biological anthropologists alike. Spatial statistics is more familiar to public health researchers as a way of analysing disease clustering and spread; nonetheless, this is a practical approach to the two-dimensional topography of the foot. We quantified the clustering of the centre of pressure (CoP) on the foot for peak braking and propulsive vertical ground reaction forces (GRFs) over multiple, contiguous steps to assess the consistency of the location of peak forces on the foot during walking. The vertical GRFs of 11 participants were collected continuously via a wireless insole system (MoticonReGo AG) across various experimental conditions. We hypothesized that CoPs would cluster in the hindfoot for braking and forefoot for propulsion, and that braking would demonstrate more consistent clustering than propulsion. Contrary to our hypotheses, we found that CoPs during braking are inconsistent in their location, and CoPs during propulsion are more consistent and clustered across all participants and all trials. These results add to our understanding of the applied forces on the foot so that we can better predict fatigue failures and better understand the mechanisms that shaped the modern bipedal form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.