Cell processes require precise regulation of actin polymerization at filament plus ends to execute normal functions. The detailed mechanisms used to control filament assembly at plus ends in the presence of diverse and often opposing regulators is not clear. Here we explore and identify residues important for the plus-end related activities of IQGAP1. In multi-wavelength TIRF assays, we directly visualize dimers of IQGAP1, mDia1, and capping protein (CP) on filament ends alone and as a multicomponent end binding complex. IQGAP1 promotes the turnover of end-binding proteins, reducing the dwell times of CP, mDia1, or mDia1-CP "decision complexes" by 8-18-fold. Loss of these activities in cells disrupts actin filament arrays, morphology, and migration. Together, our results reveal a new role for IQGAP1 in promoting protein turnover on filament ends and provide new insights into how actin assembly is regulated in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.