Microfibers are the most prevalent microplastics in most terrestrial, freshwater, and marine biota as well as in human tissues and have been collected from environmental compartments across most ecosystems and species sampled worldwide. These materials, made of diverse compound types, range from semi-synthetic and treated natural fibers to synthetic microfibers. Microfibers expose organisms across diverse taxa to an array of chemicals, both from the manufacturing process and from environmental adsorption, with effects on organisms at subcellular to population levels. Untangling the physical versus chemical effects of these compounds on organisms is challenging and requires further investigations that tease apart these mechanisms. Understanding how physical and chemical exposures affect organisms is essential to improving strategies to minimize harm.
The ecophysiology of marine ectotherms is regulated by the interaction of temperature with environmental drivers, such as dissolved oxygen (DO). The combination of low levels of DO and temperature in the ocean affects physiological and behavioral responses, especially in early life history traits of marine species. Here, we aimed to investigate the combined effect of ecologically relevant values of temperature and DO on female brooding behavior as well as on the early ontogeny of the Chilean kelp crab Taliepus dentatus. In a laboratory experiment, after acclimation and mating of females and males in constant temperatures (11 or 14°C), we exposed brooding females to 1 of 2 temperatures (11 or 14°C) and 1 of 2 DO levels (normoxia or cycling hypoxia). We tested the effects of these 4 treatments on embryo and larval sizes, embryo developmental time, female brooding behavior (i.e. embryo ventilation), larval hatching (i.e. number of hatched larvae), Zoea 1 survival to starvation, and swimming speed. We found a negative effect of temperature on the size of early embryos, but no interactions were detected in embryo size during development. High temperature and low DO increased female brooding behavior and larval size, reduced the number of hatched larvae, and affected larval swimming speed. Embryo development time and larval survival were negatively affected by temperature. These results suggest that an increasing frequency of hypoxic events, combined with ocean warming, might have important consequences on marine invertebrate brooders, affecting female fecundity, larval performance and, potentially, their dispersal ability even well within their optimal thermal range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.