The RPM marker block can be placed on the breast for DIBH treatments; however, caution should be used regarding surface dose effects. The two-dot marker block should not be used for block tilts beyond 20°. Marker block placement at a middle or superior position on the breast results in the strongest correlation with chest wall position.
The purpose of this study was to establish a simulation-based education program for radiation oncology learners in permanent seed implant brachytherapy. The first step in formalizing any education program is a validation process that builds evidence-based verification that the learning environment is appropriate. METHODS AND MATERIALS: The primary education task allowed practitioners to use an anthropomorphic breast phantom to simulate a permanent seed implant brachytherapy delivery. Validation evidence is built by generating data to assess learner and expert cohorts according to their proficiency. Each practitioner's performance during the simulation was evaluated by seed placement accuracy, procedural time-to-complete, and two qualitative evaluation toolsda global rating scale and procedural checklist. RESULTS: The average seed placement accuracy (AESD) was 8.1 AE 3.5 mm compared to 6.1 AE 2.6 mm for the learner and expert cohort, respectively. The median (range) procedural time-to-complete was 64 (60e77) minutes and 43 (41e50) minutes for the learner and expert cohort, respectively. Seed placement accuracy (student t-test, p ! 0.05) and procedural time-tocomplete (ManneWhitney U-test, p ! 0.05) were statistically different between the cohorts. In both the global rating scale and procedural checklist, the expert cohort demonstrated improved proficiency compared to the learner cohort. CONCLUSIONS: This validation evidence supports the utilization of this simulation environment toward appropriately capturing the delivery experience of practitioners. The results demonstrate that, in all areas of evaluation, expert cohort proficiency was superior to learner cohort proficiency. This methodology will be used to establish a simulation-based education program for radiation oncology learners in permanent seed implant brachytherapy.
PurposeTwo dose calculation algorithms are available in Varian Eclipse software: Anisotropic Analytical Algorithm (AAA) and Acuros External Beam (AXB). Many Varian Eclipse‐based centers have access to AXB; however, a thorough understanding of how it will affect plan characteristics and, subsequently, clinical practice is necessary prior to implementation. We characterized the difference in breast plan quality between AXB and AAA for dissemination to clinicians during implementation.MethodsLocoregional irradiation plans were created with AAA for 30 breast cancer patients with a prescription dose of 50 Gy to the breast and 45 Gy to the regional node, in 25 fractions. The internal mammary chain (IMCCTV) nodes were covered by 80% of the breast dose. AXB, both dose‐to‐water and dose‐to‐medium reporting, was used to recalculate plans while maintaining constant monitor units. Target coverage and organ‐at‐risk doses were compared between the two algorithms using dose–volume parameters. An analysis to assess location‐specific changes was performed by dividing the breast into nine subvolumes in the superior–inferior and left–right directions.ResultsThere were minimal differences found between the AXB and AAA calculated plans. The median difference between AXB and AAA for breastCTV V 95%, was <2.5%. For IMCCTV, the median differences V 95%, and V 80% were <5% and 0%, respectively; indicating IMCCTV coverage only decreased when marginally covered. Mean superficial dose increased by a median of 3.2 Gy. In the subvolume analysis, the medial subvolumes were “hotter” when recalculated with AXB and the lateral subvolumes “cooler” with AXB; however, all differences were within 2 Gy.ConclusionWe observed minimal difference in magnitude and spatial distribution of dose when comparing the two algorithms. The largest observable differences occurred in superficial dose regions. Therefore, clinical implementation of AXB from AAA for breast radiotherapy is not expected to result in changes in clinical practice for prescribing or planning breast radiotherapy.
The purpose of the study was to establish a quantitative method for implant quality evaluation in permanent seed implant brachytherapy for credentialing. Delivery-based credentialing will promote consistency in brachytherapy seed delivery and improve patient outcomes. METHODS: A workflow for delivery-based credentialing was outlined and applied to permanent breast seed implant brachytherapy. Delivery simulations were performed on implantable anthropomorphic breast phantoms. Two institutions experienced in permanent seed implant brachytherapy demonstrated the peer credentialing process. Each delivery was evaluated for seed placement accuracy as the measure of implant quality, both for implant accuracy and across five simulations to assess implant variation. Initial credentialing criteria are set based on two factors; the mean seed placement accuracy (implant accuracy) and the mean standard deviation (seed variation) with the threshold for each set with the addition of two standard deviations. RESULTS: Across two institutions, seed placement accuracy (AEstandard deviation) was calculated for all five delivery simulations to yield 6.1 (AE2.6) mm. To set credentialing criteria, the implant accuracy (6.1 mm) plus two standard deviations (2.0 mm) and the seed variation (2.6 mm) plus two standard deviations (0.8) mm yield a threshold of 8.1 AE 3.4 mm. It is expected that 95% of experienced institutions would perform the phantom simulation within this threshold. CONCLUSION: Brachytherapy programs should validate delivery accuracy by formal credentialing, which is standard in external beam programs. This quantitative implant evaluation should be combined with current credentialing standards for permanent seed brachytherapy to form a comprehensive validation of institutional brachytherapy program quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.