In the sorting plant examined during the research, the sorting of the selectively collected mixed packaging waste is done by hand. Studies were performed on the quantitative changes of the waste stream entering and leaving the sorting plant, the composition properties according to the particle size, and lastly the number of pickings. The amount of incoming waste has increased linearly over the years. The sizes preferred by the optical separators were the guideline during the measurements. Sixty percentage of all incoming waste falls in the ideal range of 70–350 mm, 20% in the range of <70 mm and 20% in the range of >350 mm. Because there are significant differences in composition and quantities as the seasons and months alternate, these results provide important information for engineers designing a mechanized technology.
Significant development has taken place in the field of waste management recently in the preparation of the energetic exploitation of recyclable, non-hazardous municipal solid waste. With mechanical-biological waste treatment, 35-40% of the weight of this waste can be made appropriate for energetic exploitation, mainly for co-incineration in cement factories and power plants. The recoverability of waste derived fuel produced in mechanical-biological waste treatment plants highly depends on the burning and combustion technological properties of the mixture, and on its compounds influencing burning and different emissions. Waste recovery facilities do not take over fuel below a specific calorific value and over a given heavy metal, halogen and pollutant content. In our research we were looking for correlations in the particle size, calorific value, moisture-, ash- and heavy metal content of waste derived fuel. On the basis of the measurement results, the connection between the particle size fractions and the fuel properties can clearly be stated. The fractions of smaller particle size have higher moisture-, ash- and heavy metal content, while the fractions of bigger particle size have higher calorific value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.