Adipose tissue surrounding major arteries (Perivascular adipose tissue or PVAT) has long been thought to exist to provide vessel support and insulation. Emerging evidence suggests that PVAT regulates artery physiology and pathology, such as, promoting atherosclerosis development through local production of inflammatory cytokines. Yet the immune subtypes in PVAT that regulate inflammation are poorly characterized. B cells have emerged as important immune cells in the regulation of visceral adipose tissue inflammation and atherosclerosis. B cell-mediated effects on atherosclerosis are subset-dependent with B-1 cells attenuating and B-2 cells aggravating atherosclerosis. While mechanisms whereby B-2 cells aggravate atherosclerosis are less clear, production of immunoglobulin type M (IgM) antibodies is thought to be a major mechanism whereby B-1 cells limit atherosclerosis development. B-1 cell-derived IgM to oxidation specific epitopes (OSE) on low density lipoproteins (LDL) blocks oxidized LDL-induced inflammatory cytokine production and foam cell formation. However, whether PVAT contains B-1 cells and whether atheroprotective IgM is produced in PVAT is unknown. Results of the present study provide clear evidence that the majority of B cells in and around the aorta are derived from PVAT. Interestingly, a large proportion of these B cells belong to the B-1 subset with the B-1/B-2 ratio being 10-fold higher in PVAT relative to spleen and bone marrow. Moreover, PVAT contains significantly greater numbers of IgM secreting cells than the aorta. ApoE−/− mice with B cell-specific knockout of the gene encoding the helix-loop-helix factor Id3, known to have attenuated diet-induced atherosclerosis, have increased numbers of B-1b cells and increased IgM secreting cells in PVAT relative to littermate controls. Immunostaining of PVAT on human coronary arteries identified fat associated lymphoid clusters (FALCs) harboring high numbers of B cells, and flow cytometry demonstrated the presence of T cells and B cells including B-1 cells. Taken together, these results provide evidence that murine and human PVAT harbor B-1 cells and suggest that local IgM production may serve to provide atheroprotection.
Desmoplastic melanomas (DM) have unique and challenging clinical presentations and histomorphology. A characteristic feature is the presence of scattered lymphoid aggregates. However, the nature of these aggregates is not defined. We hypothesized that they may be tertiary lymphoid structures (TLS), and may be associated with programmed death ligand 1 (PD-L1) expression. We searched our tissue database for 'pure' DMs and for scars as control tissues, collected clinical information, and reviewed H&E histology. We performed multispectral imaging after staining for CD8, CD20, PNAd, FoxP3, CD83, and Ki67, and assessed PD-L1 expression by immunohistochemistry. Pure DM samples were evaluable in 11 patients. All had desmoplastic stroma and lymphoid aggregates on H&E. The lymphoid aggregates of eight of the 11 (72%) DM samples and only three of the 11 scars contained features of TLS, defined as distinct clusters of B cells and CD8 T cells, CD83 dendritic cells in T-cell zones, and PNAd vasculature resembling high endothelial venules. PD-L1 was expressed by at least 1% of melanoma cells in six and by at least 5% of immune cells in 10 of the 11 DM samples. We found that most lymphoid aggregates in DM are organized, classical TLS. PD-L1 expression was detected in most cases and was highest in two cases of DM with TLS. However, low PD-L1 expression in some cases suggests that some DM cells may be unresponsive to interferon-γ. TLS support antigen presentation and T-cell responses in chronic inflammation and cancer. Their presence in DM likely reflects an adaptive immune response, which may be enhanced with immune therapies.
Hematidrosis is a disorder in which blood-tinged fluid exudes from uninjured skin or mucosa. It is often classified as an eccrine sweat disorder, though the precise mechanism-including involvement of sweat glands-has yet to be proven. In contemporary case reports, hematidrosis appears most frequently in the pediatric population, with 83% of cases in the literature since 2008 occurring in individuals 18 years old or younger. We present here a case of a 10-year-old girl with hematidrosis followed by a review of the literature, with an emphasis on the features of this condition in the pediatric population.
Therapies for head and neck squamous cell carcinoma (HNSCC) are, at best, moderately effective, underscoring the need for new therapeutic strategies. Ceramide treatment leads to cell death as a consequence of mitochondrial damage by generating oxidative stress and causing mitochondrial permeability. However, HNSCC cells are able to resist cell death through mitochondria repair via mitophagy. Through the use of the C6-ceramide nanoliposome (CNL) to deliver therapeutic levels of bioactive ceramide, we demonstrate that the effects of CNL are mitigated in drug-resistant HNSCC via an autophagic/mitophagic response. We also demonstrate that inhibitors of lysosomal function, including chloroquine (CQ), significantly augment CNL-induced death in HNSCC cell lines. Mechanistically, the combination of CQ and CNL results in dysfunctional lysosomal processing of damaged mitochondria. We further demonstrate that exogenous addition of methyl pyruvate rescues cells from CNL + CQ–dependent cell death by restoring mitochondrial functionality via the reduction of CNL- and CQ-induced generation of reactive oxygen species and mitochondria permeability. Taken together, inhibition of late-stage protective autophagy/mitophagy augments the efficacy of CNL through preventing mitochondrial repair. Moreover, the combination of inhibitors of lysosomal function with CNL may provide an efficacious treatment modality for HNSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.