Doxorubicin (Adriamycin) is an anthracycline chemotherapy agent effective in treating a wide range of malignancies with a well–established dose–response cardiotoxic side effect that can lead to heart failure. At present, it is not possible to predict which patients will be affected by doxorubicin-induced cardiotoxicity (DIC). Here we demonstrate that patient–specific human induced pluripotent stem cell–derived cardiomyocytes (hiPSC–CMs) can recapitulate individual patients’ predilection to DIC at the single cell level. hiPSC–CMs derived from breast cancer patients who suffered clinical DIC are consistently more sensitive to doxorubicin toxicity, demonstrating decreased cell viability, mitochondrial and metabolic function, calcium handling, and antioxidant pathway activity, along with increased reactive oxygen species (ROS) production compared to hiPSC–CMs from patients who did not experience DIC. Together, our data indicate that hiPSC–CMs are a suitable platform for identifying and verifying the genetic basis and molecular mechanisms of DIC.
Tyrosine kinase inhibitors (TKIs), despite efficacy as anti-cancer therapeutics, are associated with cardiovascular side effects ranging from induced arrhythmias to heart failure. We used patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), generated from 11 healthy individuals and 2 patients receiving cancer treatment, to screen FDA-approved TKIs for cardiotoxicities by measuring alterations in cardiomyocyte viability, contractility, electrophysiology, calcium handling, and signaling. With these data, we generated a “cardiac safety index” to assess cardiotoxicities of existing TKIs. TKIs with low cardiac safety indices exhibit cardiotoxicity in patients. We also derived endothelial cells (hiPSC-ECs) and cardiac fibroblasts (hiPSC-CFs) to examine cell type-specific cardiotoxicities. Using high-throughput screening, we determined that VEGFR2/PDGFR-inhibiting TKIs caused cardiotoxicity in hiPSC-CMs, hiPSC-ECs, and hiPSC-CFs. Using phosphoprotein analysis, we determined that VEGFR2/PDGFR-inhibiting TKIs led to a compensatory increase in cardioprotective insulin and insulin-like growth factor (IGF) signaling in hiPSC-CMs. Upregulating cardioprotective signaling with exogenous insulin or IGF1 improved hiPSC-CM viability during co-treatment with cardiotoxic VEGFR2/PDGFR-inhibiting TKIs. Thus, hiPSC-CMs can be used to screen for cardiovascular toxicities associated with anti-cancer TKIs, correlating with clinical phenotypes. This approach provides unexpected insights, as illustrated by our finding that toxicity can be alleviated via cardioprotective insulin/IGF signaling.
Since the first discovery that human pluripotent stem cells (hPSCs) can differentiate to cardiomyocytes, efforts have been made to optimize the conditions under which this process occurs. One of the most effective methodologies to optimize this process is reductionist simplification of the medium formula, which eliminates complex animal-derived components to help reveal the precise underlying mechanisms. Here we describe our latest cost-effective and efficient methodology for the culture of hPSCs in the pluripotent state using a modified variant of chemically defined E8 medium. We provide exact guidelines for cell handling under these conditions, including non-enzymatic EDTA passaging, which have been optimized for subsequent cardiomyocyte differentiation. We describe in depth the latest version of our monolayer chemically defined small molecule differentiation protocol, including metabolic selection-based cardiomyocyte purification and the addition of triiodothyronine to enhance cardiomyocyte maturation. Finally, we describe a method for the dissociation of hPSC-derived cardiomyocytes, cryopreservation, and thawing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.