This paper suggests five new contributions with respect to the state-of-the-art. First, the optimal tuning of cost-effective fuzzy controllers represented by Takagi-Sugeno-Kang proportional-integral fuzzy controllers (TSK PI-FCs) is carried out using a fresh metaheuristic algorithm, namely the Slime Mould Algorithm (SMA), and a fuzzy controller tuning approach is offered. Second, a relatively easily understandable formulation of SMA is offered. Third, a real-world application of SMA is given, focusing on the optimal tuning of TSK PI-FCs for nonlinear servo systems in terms of optimization problems that target the minimization of discrete-time cost functions defined as the sum of time multiplied by squared control error. Fourth, using the concept of improving the performance of metaheuristic algorithms with information feedback models, proposed by Wang and Tan, Improving metaheuristic algorithms with information feedback models, IEEE Trans. Cybern. 49 (2019), 542-555, Gu and Wang, Improving NSGA-III algorithms with information feedback models for large-scale many-objective optimization, Fut. Gen. Comput. Syst. 107 (2020), 49-69, and Zhang et al., Enhancing MOEA/D with information feedback models for large-scale many-objective optimization, Inf. Sci. 522 (2020), 1-16, new metaheuristic algorithms are introduced in terms of inserting the model F1 in SMA and other representative algorithms, namely Gravitational Search Algorithm (GSA), Charged System Search (CSS), Grey Wolf Optimizer (GWO) and Whale Optimization Algorithm (WOA). Fifth, the real-time validation of the cost-effective fuzzy controllers and their tuning approach is performed in the framework of angular position control of laboratory servo system. The comparison with other metaheuristic algorithms that solve the same optimization problem for optimal parameter tuning of cost-effective fuzzy controllers suggestively highlights the superiority of SMA. Experimental results are included.
This paper proposes an easily understandable Grey Wolf Optimizer (GWO) applied to the optimal tuning of the parameters of Takagi-Sugeno proportional-integral fuzzy controllers (T-S PI-FCs). GWO is employed for solving optimization problems focused on the minimization of discrete-time objective functions defined as the weighted sum of the absolute value of the control error and of the squared output sensitivity function, and the vector variable consists of the tuning parameters of the T-S PI-FCs. Since the sensitivity functions are introduced with respect to the parametric variations of the process, solving these optimization problems is important as it leads to fuzzy control systems with a reduced process parametric sensitivity obtained by a GWO-based fuzzy controller tuning approach. GWO algorithms applied with this regard are formulated in easily understandable terms for both vector and scalar operations, and discussions on stability, convergence, and parameter settings are offered. The controlled processes referred to in the course of this paper belong to a family of nonlinear servo systems, which are modeled by second order dynamics plus a saturation and dead zone static nonlinearity. Experimental results concerning the angular position control of a laboratory servo system are included for validating the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.