Peptide binding to class I major histocompatibility complex (MHCI) molecules is a key step in the immune response and the structural details of this interaction are of importance in the design of peptide vaccines. Algorithms based on primary sequence have had success in predicting potential antigenic peptides for MHCI, but such algorithms have limited accuracy and provide no structural information. Here, we present an algorithm, PePSSI (peptide-MHC prediction of structure through solvated interfaces), for the prediction of peptide structure when bound to the MHCI molecule, HLA-A2. The algorithm combines sampling of peptide backbone conformations and flexible movement of MHC side chains and is unique among other prediction algorithms in its incorporation of explicit water molecules at the peptide-MHC interface. In an initial test of the algorithm, PePSSI was used to predict the conformation of eight peptides bound to HLA-A2, for which X-ray data are available. Comparison of the predicted and X-ray conformations of these peptides gave RMSD values between 1.301 and 2.475 A. Binding conformations of 266 peptides with known binding affinities for HLA-A2 were then predicted using PePSSI. Structural analyses of these peptide-HLA-A2 conformations showed that peptide binding affinity is positively correlated with the number of peptide-MHC contacts and negatively correlated with the number of interfacial water molecules. These results are consistent with the relatively hydrophobic binding nature of the HLA-A2 peptide binding interface. In summary, PePSSI is capable of rapid and accurate prediction of peptide-MHC binding conformations, which may in turn allow estimation of MHCI-peptide binding affinity.
Water molecules at protein-protein interfaces contribute to the close packing of atoms and ensure complementarity between the protein surfaces, as well as mediating polar interactions. Therefore, modeling of interface water is of importance in understanding the structural basis of biomolecular association. We present an algorithm, WATGEN, which predicts locations for water molecules at a protein-protein or protein-peptide interface, given the atomic coordinates of the protein and peptide. A key element of the WATGEN algorithm is the prediction of water sites that can form multiple hydrogen bonds that bridge the binding interface. Trial calculations were performed on water networks predicted by WATGEN at 126 protein-peptide interfaces (X-ray resolutions
The combination of LC/MS/MS and SALSA searches could dramatically improve the efficiency and accuracy of determining the specific sites of oxidation of in vitro, copper-oxidized Abeta1-40 as well as other oxidized proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.