Focal segmental glomerulosclerosis (FSGS) is a prevalent glomerular disease characterized by proteinuria, progression to end stage renal disease and recurrence of proteinuria after kidney transplantation in approximately one third of patients. It has been suggested that rituximab might treat recurrent FSGS through an unknown mechanism. Rituximab recognizes CD20 on B-lymphocytes but might also bind sphingomyelin-phosphodiesterase-acid-like-3b (SMPDL-3b) and regulates acid-sphyngomyelinase (ASMase) activity. We hypothesized that rituximab prevents recurrent FSGS and preserves podocyte SMPDL-3b expression. We studied 41 patients at high risk for recurrent FSGS, 27 of whom were treated with rituximab at time of kidney transplant. Incidence of nephrotic-range proteinuria and change in estimated glomerular filtration rate (ΔeGFR) were analyzed. SMPDL-3b immunostaining was performed in post-reperfusion kidney biopsies. SMPDL-3b protein, ASMase activity, and cytoskeleton remodeling were studied in cultured normal human podocytes that had been exposed to patient sera with or without rituximab. Rituximab treatment was associated with lower incidence of post-transplant proteinuria and decreased ΔeGFR. The number of SMPDL-3b+ podocytes in post-reperfusion biopsies was reduced in patients who developed recurrent FSGS. Rituximab partially prevented SMPDL-3b and ASMase downregulation that was observed in podocytes treated with the sera of patients with recurrent FSGS. Either SMPDL-3b overexpression or treatment with rituximab prevented disruption of the actin cytoskeleton and podocyte apoptosis induced by patient sera. This effect was diminished in cultured podocytes where the gene encoding SMPDL-3b was silenced. Our study suggests that treatment of high-risk patients with rituximab at time of kidney transplant might prevent recurrent FSGS by modulating podocyte function in an SMPDL-3b–dependent manner.
Purpose of review-In diabetic nephropathy (DN), insulin resistance and hyperinsulinemia correlate with the development of albuminuria. The possibility that altered insulin signaling in glomerular cells and particularly podocytes contributes to the development of DN will be discussed.Recent findings-While normal podocytes uptake glucose in response to insulin, diabetic podocytes become insulin resistant in experimental DN prior to the development of significant albuminuria. Both clinical and experimental data suggest that insulin sensitizers may be renoprotective independently of their systemic effects on the metabolic control of diabetes.Summary-We will review the clinical and experimental evidence that altered insulin signaling correlates with the development of DN in both type 1 and type 2 diabetes, and that insulin sensitizers may be superior to other hypoglycemic agents in the prevention of DN. We will then review potential mechanisms by which altered podocyte insulin signaling may contribute to the development of DN. Understanding the role of podocyte in glucose metabolism is important because it may lead to the discovery of novel pathogenetic mechanisms of DN, it may affect current strategies for prevention and treatment of DN, and it may allow for the identification of novel therapeutic targets.
OBJECTIVENephrin, an immunoglobulin-like protein essential for the function of the glomerular podocyte and regulated in diabetic nephropathy, is also expressed in pancreatic β-cells, where its function remains unknown. The aim of this study was to investigate whether diabetes modulates nephrin expression in human pancreatic islets and to explore the role of nephrin in β-cell function.RESEARCH DESIGN AND METHODSNephrin expression in human pancreas and in MIN6 insulinoma cells was studied by Western blot, PCR, confocal microscopy, subcellular fractionation, and immunogold labeling. Islets from diabetic (n = 5) and nondiabetic (n = 7) patients were compared. Stable transfection and siRNA knockdown in MIN-6 cells/human islets were used to study nephrin function in vitro and in vivo after transplantation in diabetic immunodeficient mice. Live imaging of green fluorescent protein (GFP)-nephrin–transfected cells was used to study nephrin endocytosis.RESULTSNephrin was found at the plasma membrane and on insulin vesicles. Nephrin expression was decreased in islets from diabetic patients when compared with nondiabetic control subjects. Nephrin transfection in MIN-6 cells/pseudoislets resulted in higher glucose-stimulated insulin release in vitro and in vivo after transplantation into immunodeficient diabetic mice. Nephrin gene silencing abolished stimulated insulin release. Confocal imaging of GFP-nephrin–transfected cells revealed nephrin endocytosis upon glucose stimulation. Actin stabilization prevented nephrin trafficking as well as nephrin-positive effect on insulin release.CONCLUSIONSOur data suggest that nephrin is an active component of insulin vesicle machinery that may affect vesicle-actin interaction and mobilization to the plasma membrane. Development of drugs targeting nephrin may represent a novel approach to treat diabetes.
Podocytes are a major component of the glomerular filtration barrier, and their ability to sense insulin is essential to prevent proteinuria. Here we identify the insulin downstream effector GLUT4 as a key modulator of podocyte function in diabetic nephropathy (DN). Mice with a podocyte-specific deletion of GLUT4 (G4 KO) did not develop albuminuria despite having larger and fewer podocytes than wild-type (WT) mice. Glomeruli from G4 KO mice were protected from diabetes-induced hypertrophy, mesangial expansion, and albuminuria and failed to activate the mammalian target of rapamycin (mTOR) pathway. In order to investigate whether the protection observed in G4 KO mice was due to the failure to activate mTOR, we used three independent in vivo experiments. G4 KO mice did not develop lipopolysaccharide-induced albuminuria, which requires mTOR activation. On the contrary, G4 KO mice as well as WT mice treated with the mTOR inhibitor rapamycin developed worse adriamycin-induced nephropathy than WT mice, consistent with the fact that adriamycin toxicity is augmented by mTOR inhibition. In summary, GLUT4 deficiency in podocytes affects podocyte nutrient sensing, results in fewer and larger cells, and protects mice from the development of DN. This is the first evidence that podocyte hypertrophy concomitant with podocytopenia may be associated with protection from proteinuria.
C-jun N-terminal kinase (JNK) regulates both the development of insulin resistance and inflammation. Podocytes of the widely used db/db mouse model of diabetic nephropathy lose their ability to respond to insulin as albuminuria develops, in comparison to control db/+ mice. Here we tested whether JNK inhibition or its gene deletion would prevent albuminuria in experimental diabetes. Phosphorylated/total JNK was significantly increased in vivo in glomeruli of db/db compared to db/+ mice. Treatment of podocytes isolated from these two strains of mice with tumor necrosis factor-alpha caused greater phosphorylation of JNK in those obtained from diabetic animals. When db/db mice were treated with a cell-permeable TAT-JNK inhibitor peptide, their insulin sensitivity and glycemia significantly improved compared to controls. We induced diabetes in JNK1 knockout mice with streptozotocin and found that they had significantly better insulin sensitivity compared to diabetic wild-type or JNK2 knockout mice. Albuminuria was, however, worse in all mice treated with the JNK inhibitor and in diabetic JNK2 knockout mice compared to controls. Nephrin expression was also reduced in JNK inhibitor-treated mice compared to controls. A similar degree of mesangial expansion was found in all diabetic mice. Our study shows that targeting JNK to improve systemic insulin sensitivity does not necessarily prevent diabetic nephropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.