The concept of feedback is key in assessing whether a perturbation to a system is amplified or damped by mechanisms internal to the system. In polar regions, climate dynamics are controlled by both radiative and non-radiative interactions between the atmosphere, ocean, sea ice, ice sheets and land surfaces. Precisely quantifying polar feedbacks is required for a process-oriented evaluation of climate models, a clear understanding of the processes responsible for polar climate changes, and a reduction in uncertainty associated with model projections. This quantification can be performed using a simple and consistent approach that is valid for a wide range of feedbacks, offering the opportunity for more systematic feedback analyses and a better understanding of polar climate changes.
Are equilibrium climate sensitivity and the associated radiative feedbacks a constant property of the climate system, or do they change with forcing magnitude and base climate? Using the radiative kernel technique, feedbacks and climate sensitivity are evaluated in a fully coupled general circulation model (GCM) for three successive doublings of carbon dioxide starting from present-day concentrations. Climate sensitivity increases by 23% between the first and third CO 2 doublings. Increases in the positive water vapor and cloud feedbacks are partially balanced by a decrease in the positive surface albedo feedback and an increase in the negative lapse rate feedback. Feedbacks can be decomposed into a radiative flux change and a climate variable response to temperature change. The changes in water vapor and Planck feedbacks are due largely to changes in the radiative response with climate state. Higher concentrations of greenhouse gases and higher temperatures lead to more absorption and emission of longwave radiation. Changes in cloud feedbacks are dominated by the climate response to temperature change, while the lapse rate and albedo feedbacks combine elements of both. Simulations with a slab ocean model (SOM) version of the GCM are used to verify whether an SOM-GCM accurately reproduces the behavior of the fully coupled model. Although feedbacks differ in magnitude between model configurations (with differences as large as those between CO 2 doublings for some feedbacks), changes in feedbacks between CO 2 doublings are consistent in sign and magnitude in the SOM-GCM and the fully coupled model.
Climate feedbacks vary strongly among climate models and continue to represent a major source of uncertainty in estimates of the response of climate to anthropogenic forcings. One method to evaluate feedbacks in global climate models is the radiative kernel technique, which is well suited for model intercomparison studies because of its computational efficiency. However, the usefulness of this technique is predicated on the assumption of linearity between top-of-atmosphere (TOA) radiative fluxes and feedback variables, limiting its application to simulations of small climate perturbations, where nonlinearities can be neglected. This paper presents an extension of the utility of this linear technique to large forcings, using global climate model simulations forced with CO 2 concentrations ranging from 2 to 8 times present-day values. Radiative kernels depend on the model's radiative transfer algorithm and climate base state. For large warming, kernels based on the present-day climate significantly underestimate longwave TOA flux changes and somewhat overestimate shortwave TOA flux changes. These biases translate to inaccurate feedback estimates. It is shown that a combination of present-day kernels and kernels computed using a large forcing climate base state leads to significant improvement in the approximation of TOA flux changes and increased reliability of feedback estimates. While using present-day kernels results in a climate sensitivity that remains constant, using the new kernels shows that sensitivity increases significantly with each successive doubling of CO 2 concentrations.
Dimethyl sulfide (DMS) is a significant source of marine sulfate aerosol and plays an important role in modifying cloud properties. Fully coupled climate simulations using dynamic marine ecosystem and DMS calculations are conducted to estimate DMS fluxes under various climate scenarios and to examine the sign and strength of phytoplankton-DMS-climate feedbacks for the first time. Simulation results show small differences in the DMS production and emissions between pre-industrial and present climate scenarios, except for some areas in the Southern Ocean. There are clear changes in surface ocean DMS concentrations moving into the future, and they are attributable to changes in phytoplankton production and competition driven by complex spatially varying mechanisms. Comparisons between parallel simulations with and without DMS fluxes into the atmosphere show significant differences in marine ecosystems and physical fields. Without DMS, the missing subsequent aerosol indirect effects on clouds and radiative forcing lead to fewer clouds, more solar radiation, and a much warmer climate. Phaeocystis, a uniquely efficient organosulfur producer with a growth advantage under cooler climate states, can benefit from producing the compound through cooling effects of DMS in the climate system. Our results show a tight coupling between the sulfur and carbon cycles. The ocean carbon uptake declines without DMS emissions to the atmosphere. The analysis indicates a weak positive phytoplankton-DMS-climate feedback at the global scale, with large spatial variations driven by individual autotrophic functional groups and complex mechanisms. The sign and strength of the feedback vary with climate states and phytoplankton groups. This highlights the importance of a dynamic marine ecosystem module and the sulfur cycle mechanism in climate projections.
In this paper the atmospheric response to an open-ocean polynya in the Southern Ocean is studied by analyzing the results from an atmospheric and oceanic synoptic-scale resolving Community Earth System Model (CESM) simulation. While coarser-resolution versions of CESM generally do not produce open-ocean polynyas in the Southern Ocean, they do emerge and disappear on interannual time scales in the synoptic-scale simulation. This provides an ideal opportunity to study the polynya’s impact on the overlying and surrounding atmosphere. This has been pursued here by investigating the seasonal cycle of differences of surface and air-column variables between polynya and nonpolynya years. The results indicate significant local impacts on turbulent heat fluxes, precipitation, cloud characteristics, and radiative fluxes. In particular, it is found that clouds over polynyas are optically thicker and higher than clouds over sea ice during nonpolynya years. Although the lower albedo of polynyas significantly increases the net shortwave absorption, the enhanced cloud brightness tempers this increase by almost 50%. Also, in this model, enhanced longwave radiation emitted from the warmer surface of polynyas is balanced by stronger downwelling fluxes from the thicker cloud deck. Impacts are found to be sensitive to the synoptic wind direction. The strongest regional impacts are found when northeasterly winds cross the polynya and interact with katabatic winds. Surface air pressure anomalies over the polynya are only found to be significant when cold, dry air masses strike over the polynya (i.e., in the case of southerly winds).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.