1 2 5 4 VOLUME 18 | NUMBER 8 | AUGUST 2012 nAture medicine Therapeutic cancer vaccines hold the promise of combining meaningful efficacy (prolongation of survival) with very good safety and tolerability, as has been shown in several recent randomized trials 1-3 . However, development of cancer vaccines remains a major challenge, with little knowledge of (i) the optimal tumor antigens to target, (ii) suitable agents to counteract regulatory mechanisms opposing successful immunotherapy and (iii) surrogate and predictive biomarkers that can improve our understanding of these regulatory mechanisms and predict a patient's response to therapy. The first major issue addressed in this work is whether relevant HLArestricted peptides for immunotherapeutic intervention in patients with RCC can be identified and clinically validated. We defined the relevance of the antigens as their natural presence on the tumor in the majority of RCC samples, their immunogenicity (induction of T cell responses in clinical studies) and the association of the vaccine-induced T cell responses with clinical benefit. For the identification, selection and preclinical immunological validation of such antigens, we used the antigen discovery platform XPRESIDENT 4,5 to create a multipeptide vaccine designated IMA901 for immunotherapy of RCC. We tested IMA901 in HLA-A*02 + subjects with advanced RCC in two clinical trials, a phase 1 (n = 28) and a randomized phase 2 (n = 68) trial, both of which assessed the association of T cell responses to IMA901 with clinical benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.