We define the Wirtinger number of a link, an invariant closely related to the meridional rank. The Wirtinger number is the minimum number of generators of the fundamental group of the link complement over all meridional presentations in which every relation is an iterated Wirtinger relation arising in a diagram. We prove that the Wirtinger number of a link equals its bridge number. This equality can be viewed as establishing a weak version of Cappell and Shaneson's Meridional Rank Conjecture, and suggests a new approach to this conjecture. Our result also leads to a combinatorial technique for obtaining strong upper bounds on bridge numbers. This technique has so far allowed us to add the bridge numbers of approximately 50,000 prime knots of up to 14 crossings to the knot table. As another application, we use the Wirtinger number to show there exists a universal constant C with the property that the hyperbolic volume of a prime alternating link L is bounded below by C times the bridge number of L.
We prove the meridional rank conjecture for twisted links and arborescent links associated to bipartite trees with even weights. These links are substantial generalizations of pretzels and two-bridge links, respectively. Lower bounds on meridional rank are obtained via Coxeter quotients of the groups of link complements. Matching upper bounds on bridge number are found using the Wirtinger numbers of link diagrams, a combinatorial tool developed by the authors.
AbstractWe define a metric filtration of the Gordian graph by an infinite family of 1-dense subgraphs. The nth subgraph of this family is generated by all knots whose fundamental groups surject to a symmetric group with parameter at least n, where all meridians are mapped to transpositions. Incidentally, we verify the Meridional Rank Conjecture for a family of knots with unknotting number one yet arbitrarily high bridge number.
Kjuchukova's Ξp invariant gives a ribbon obstruction for Fox p-colored knots. The invariant is derived from dihedral branched covers of 4-manifolds, and can be used to calculate the signatures of these covers when singularities on the branching sets are present. In this note, we give an algorithm for evaluating Ξp from a colored knot diagram, and compute a couple of examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.