Psoralens (psoralen, khellin, and visnagin) in 1 mM doses were shown to enhance the generation of reactive oxygen species, such as the hydroxyl radical (HO ⅐ ), the superoxide anion radical (O 2 Ϫ • ), and singlet oxygen ( 1 O 2 ), from the system generating chemiluminescence (CL), as well as free radicals in the absence of light. The system that generated CL was made up of CoCl 2 and H 2 O 2 . Incubation of psoralens in 0.2 mM doses with the generating system showed that only 8-methoxypsoralen and khellin have antioxidative effects. Antioxidative effects were also observed in the case of visnagin but in low concentration (0.05 mM). High doses of psoralens (1 mM) showed prooxidative effects. Measurements were done using a deoxyribose assay, the CL method, and spin-trapping with 5,5-dimethyl-1-pyrroline-N-oxide and 2,2,6,6-tetramethylpiperidine combined with electron spin resonance spectroscopy and spectrophotometry methods.
4-(4-Phenoxybenzoyl)benzoic acid derivatives (PBADs) were found to inhibit rat and human alpha-reductase isozymes 1 and 2 in vitro. Chemiluminescence (CL), electron spin resonance, spin trapping techniques, and spectrophotometry were used to examine the effect of PBADs on reactive oxygen species (superoxide radical, O(2)(.-); hydroxyl radical, HO(*); singlet oxygen, (1)O(2)) generating systems. All test compounds at a concentration of 0.5 mM enhanced the CL from O(2)(.-) up to fivefold, which was recorded as the light sums during 1 min. At 0.38 mM PBAD enhanced production of HO(*) from H(2)O(2) in the presence of Co(II) up to 90%, as measured by a deoxyribose assay. Using the spin trap agent 5,5-dimethyl-1-pyrroline-N-oxide, it was found that the amplitude of the signal arising from the Fenton-like reaction [Co(II)/H(2)O(2)] was significantly diminished by the test compounds. The compounds also inhibited the (1)O(2) dependent 2,2,6,6-tetramethylpiperidine-N-oxide radical, which is generated in the acetonitrile/H(2)O(2) system. The measured rate constants of (1)O(2)-dimol quenching by PBAD were in the range of (0.8-2.6) x 10(8) M(-1) s(-1). The interaction between PBAD and (1)O(2) was also checked using a spectrophotometry method based on bleaching of p-nitrosodimethylaniline. These results indicate that PBAD may directly scavenge HO(*) and (1)O(2), but not O(2)(.-). However, the compounds that were examined had prooxidant ability under some reaction conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.