Bacillus amyloliquefaciens FZB42 is a Gram-positive, plant-associated bacterium, which stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. Its 3,918-kb genome, containing an estimated 3,693 protein-coding sequences, lacks extended phage insertions, which occur ubiquitously in the closely related Bacillus subtilis 168 genome. The B. amyloliquefaciens FZB42 genome reveals an unexpected potential to produce secondary metabolites, including the polyketides bacillaene and difficidin. More than 8.5% of the genome is devoted to synthesizing antibiotics and siderophores by pathways not involving ribosomes. Besides five gene clusters, known from B. subtilis to mediate nonribosomal synthesis of secondary metabolites, we identified four giant gene clusters absent in B. subtilis 168. The pks2 gene cluster encodes the components to synthesize the macrolactin core skeleton.
The environmental strain Bacillus amyloliquefaciens FZB42 promotes plant growth and suppresses plant pathogenic organisms present in the rhizosphere. We sampled sequenced the genome of FZB42 and identified 2,947 genes with >50% identity on the amino acid level to the corresponding genes of Bacillus subtilis 168. Six large gene clusters encoding nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) occupied 7.5% of the whole genome. Two of the PKS and one of the NRPS encoding gene clusters were unique insertions in the FZB42 genome and are not present in B. subtilis 168. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis revealed expression of the antibiotic lipopeptide products surfactin, fengycin, and bacillomycin D. The fengycin (fen) and the surfactin (srf) operons were organized and located as in B. subtilis 168. A large 37.2-kb antibiotic DNA island containing the bmy gene cluster was attributed to the biosynthesis of bacillomycin D. The bmy island was found inserted close to the fen operon. The responsibility of the bmy, fen, and srf gene clusters for the production of the corresponding secondary metabolites was demonstrated by cassette mutagenesis, which led to the loss of the ability to produce these peptides. Although these single mutants still largely retained their ability to control fungal spread, a double mutant lacking both bacillomycin D and fengycin was heavily impaired in its ability to inhibit growth of phytopathogenic fungi, suggesting that both lipopeptides act in a synergistic manner.The rhizosphere colonizing Bacillus amyloliquefaciens strain FZB42 is distinguished from the related model organism Bacillus subtilis 168 by its ability to stimulate plant growth and to suppress plant pathogenic organisms (12,14). However, the basis for successful mutualistic colonization of plant rhizosphere by some Bacillus strains is still unknown. We assume that rhizosphere competence and biocontrol function in bacilli are partly caused by nonribosomally produced cyclic lipopeptides acting against phytopathogenic viruses, bacteria, fungi, and nematodes. These lipopeptides are synthesized at modular multienzymatic templates (33) and consist of a -amino or -hydroxy fatty acid component that is integrated into a peptide moiety.Some of these lipopeptides have been studied in greater detail, including surfactin, fengycins, and several iturins. Surfactin is a heptapeptide with an LLDLLDL chiral sequence linked, via a lactone bond, to a -hydroxy fatty acid with 13 to 15 carbon atoms. Surfactin exerts its antimicrobial and antiviral effect by altering membrane integrity (30). Fengycin and the closely related plipastatin are cyclic lipodecapeptides containing a -hydroxy fatty acid with a side chain length of 16 to 19 carbon atoms. Four D-amino acids and ornithine (a nonproteinogenic residue) have been identified in the peptide portion of fengycin. It is specifically active against filamentous fungi and inhibits phospholipase A 2 (26). Members of the iturin famil...
Although bacterial polyketides are of considerable biomedical interest, the molecular biology of polyketide biosynthesis in Bacillus spp., one of the richest bacterial sources of bioactive natural products, remains largely unexplored. Here we assign for the first time complete polyketide synthase (PKS) gene clusters to Bacillus antibiotics. Three giant modular PKS systems of the trans-acyltransferase type were identified in Bacillus amyloliquefaciens FZB 42. One of them, pks1, is an ortholog of the pksX operon with a previously unknown function in the sequenced model strain Bacillus subtilis 168, while the pks2 and pks3 clusters are novel gene clusters. Cassette mutagenesis combined with advanced mass spectrometric techniques such as matrixassisted laser desorption ionization-time of flight mass spectrometry and liquid chromatography-electrospray ionization mass spectrometry revealed that the pks1 (bae) and pks3 (dif) gene clusters encode the biosynthesis of the polyene antibiotics bacillaene and difficidin or oxydifficidin, respectively. In addition, B. subtilis OKB105 (pheA sfp 0 ), a transformant of the B. subtilis 168 derivative JH642, was shown to produce bacillaene, demonstrating that the pksX gene cluster directs the synthesis of that polyketide.Environmental Bacillus amyloliquefaciens strain FZB 42 is distinguished from the domesticated model organism Bacillus subtilis 168 (23) by several features important for rhizosphere competence particularly by its abilities to suppress competitive organisms present in the plant rhizosphere (17, 21) and to promote plant growth (16). In a previous contribution (20), we have reported that B. amyloliquefaciens FZB 42 is a producer of three families of lipopeptides, surfactins, bacillomycins D, and fengycins, which are well-known secondary metabolites with mainly antifungal activity. They are also produced by numerous B. subtilis strains (48). Furthermore, three giant gene clusters containing genes with homology to polyketide synthase (PKS) genes of modular organization were identified but not assigned functional roles. Mutants of FZB 42 deficient in the synthesis of cyclic lipopeptides were unable to suppress phytopathogenic fungi but still retained their antibacterial potency.Polyketides belong to a large family of secondary metabolites that include many bioactive compounds with antibacterial, immunosuppressive, antitumor, or other physiologically relevant bioactivities. Their biosynthesis is accomplished by stepwise decarboxylative Claisen condensations between the extender unit and the growing polyketide chain, generating enzyme-bound -ketoacyl intermediates. Before a subsequent round of chain extension, a variable set of modifying enzymes can locally introduce structural variety. Similar to the nonribosomal synthesis of peptides, the PKS multienzyme system uses acyl carrier proteins (ACPs) that are posttranslationally modified with the 4Ј-phosphopantetheine prosthetic group to channel the growing polyketide intermediate during elongation processes (3). Type I PKSs...
To maintain cellular structure and integrity during division, Gram-negative bacteria must carefully coordinate constriction of a tripartite cell envelope of inner membrane, peptidoglycan (PG), and outer membrane (OM). It has remained enigmatic how this is accomplished. Here, we show that envelope machines facilitating septal PG synthesis (PBP1B-LpoB complex) and OM constriction (Tol system) are physically and functionally coordinated via YbgF, renamed CpoB (Coordinator of PG synthesis and OM constriction, associated with PBP1B). CpoB localizes to the septum concurrent with PBP1B-LpoB and Tol at the onset of constriction, interacts with both complexes, and regulates PBP1B activity in response to Tol energy state. This coordination links PG synthesis with OM invagination and imparts a unique mode of bifunctional PG synthase regulation by selectively modulating PBP1B cross-linking activity. Coordination of the PBP1B and Tol machines by CpoB contributes to effective PBP1B function in vivo and maintenance of cell envelope integrity during division.DOI: http://dx.doi.org/10.7554/eLife.07118.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.