Vanadium is an important redox-sensitive trace metal for paleoenvironmental reconstructions. Modern organic-rich sediments persistently contain sediment V enrichments <500 μg/g, but many ancient marine organic-rich mudrocks record enrichments >500 μg/g. Previous studies propose that ancient V enrichments of these magnitudes (“V hyper-enrichments”) were deposited from hyper-sulfidic bottom-waters with higher H2S levels (≥10 mM) than observed in modern euxinic basins. To test the importance of hyper-sulfidic conditions for generating V hyper-enrichments, we compare V concentrations with Mo isotope (δ98Mo) compositions from mudrock samples ranging in age from Ediacaran to Pleistocene. In the modern ocean, sediments deposited from strongly euxinic bottom waters ([H2S]aq > 11 μM) closely record global seawater δ98Mo because conversion of molybdate to tri- and tetra-thiomolybdate is quantitative. By contrast, large Mo isotope fractionations occur during Mo adsorption to Fe-Mn particulates or because of incomplete formation of the most sulfidic thiomolybdates in weakly euxinic settings ([H2S]aq < 11 μM), which both favor removal of lighter-mass Mo isotopes to sediments. We find multiple examples when mudrocks with V hyper-enrichments are associated with a wide range of δ98Mo for a single time interval, including values at or below oceanic input δ98Mo (0.3–0.7‰). This observation suggests significant isotopic offset from reasonable seawater values (typically ≥1.0‰). Thus, we conclude that hyper-sulfidic conditions were not responsible for many V hyper-enrichments in Ediacaran–Phanerozoic mudrocks. Instead, sediment V hyper-enrichments can be explained by high Fe-Mn particulate fluxes to weakly euxinic sediments or by moderately restricted euxinic settings with strongly euxinic ([H2S]aq > 11 μM but not necessarily > 10 mM) or weakly euxinic (with slow clastic sedimentation rates and high organic carbon fluxes) bottom waters where vigorous water exchange provides a continuous V supply from the open ocean.
Mesozoic oceanic anoxic events are recognized as widespread deposits of marine organic-rich mudrocks temporally associated with mass extinctions and large igneous province emplacement. The Toarcian Oceanic Anoxic Event is one example during which expanded ocean anoxia is hypothesized in response to environmental perturbations associated with emplacement of the Karoo–Ferrar igneous province. However, the global extent of total seafloor anoxia and the relative extent of euxinic (anoxic and sulfide-rich) and non-euxinic anoxic conditions during the Toarcian Oceanic Anoxic Event are poorly constrained. Here we present estimates of the global total anoxic and euxinic seafloor areas before and during the Toarcian Oceanic Anoxic Event based on rhenium and molybdenum enrichments, respectively, in organic-rich mudrocks of the Fernie Formation (British Columbia, Canada). We find that mass balance models depict an expansion of up to ~7% total seafloor anoxia, which was dominated by euxinia, at the onset of the Toarcian Oceanic Anoxic Event, followed by a contraction before the end of the event. The global ocean redox trends revealed by the rhenium data mirrors the collapse and recovery patterns of global ammonite and foraminiferal biodiversity.
Mesozoic oceanic anoxic events are recognized as widespread deposits of marine organic-rich mudrocks temporally associated with mass extinctions and large igneous province emplacement. The Toarcian Oceanic Anoxic Event (T-OAE) is one example during which expanded ocean anoxia is hypothesised in response to environmental perturbations associated with emplacement of the Karoo–Ferrar igneous province. However, the global extent of total seafloor anoxia and the relative extent of ferruginous (anoxic and Fe2+-rich) versus euxinic (anoxic and H2S-rich) conditions during the T-OAE and other Mesozoic OAEs are poorly constrained. Here we present new estimates of the global anoxic and euxinic seafloor area before and during the T-OAE based on rhenium and molybdenum enrichments in organic-rich mudrocks of the Fernie Formation (British Columbia, Canada). Trace metal concentrations and ratios, together with high organic carbon contents, indicate that this previously unstudied locality was minimally restricted from global ocean circulation, experienced deep-water nutrient upwelling, and had O2-deficient bottom waters. Pronounced rhenium and molybdenum enrichments in mudrocks deposited from locally anoxic and euxinic waters, respectively, point to large global oceanic reservoirs of these metals. Mass balance models suggest that the T-OAE likely comprised a modest expansion of up to ~7% anoxic seafloor dominated by euxinia. Hence, anoxic seafloor was likely confined to epicontinental seaways, semi-restricted basins, and continental margin oxygen minimum zones during the T-OAE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.