The presence of high concentrations of glutamate in the extracellular fluid following brain trauma or ischaemia may contribute substantially to subsequent impairments of neuronal function. In this study, glutamate was applied to hippocampal slices for several minutes, producing over-depolarisation which was reflected in an initial loss of evoked population potential size in the CA1 region. Orthodromic population spikes recovered only partially over the following 60 minutes, whereas antidromic spikes and excitatory postsynaptic potentials (epsps) showed greater recovery, implying a change in epspspike coupling (E-S coupling) which was confirmed by intracellular recording from CA1 pyramidal cells. The recovery of epsps was enhanced further by dizocilpine suggesting that the long-lasting glutamate-induced change in E-S coupling involves NMDA receptors. This was supported by experiments showing that when isolated NMDAreceptor mediated epsps were studied in isolation, there was only partial recovery following glutamate, unlike the composite epsps. The recovery of orthodromic population spikes and NMDA receptor-mediated epsps following glutamate was enhanced by the adenosine A 1 receptor blocker DPCPX, the A2A receptor antagonist SCH58261, or adenosine deaminase, associated with a loss of restoration to normal of the glutamate-induced E-S depression. The results indicate that the long-lasting depression of neuronal excitability following recovery from glutamate is associated with a depression of E-S coupling, This effect is partly dependent on activation of NMDA receptors which modify adenosine release or the sensitivity of adenosine receptors. The results may have implications for the use of A1 and A2A receptor ligands as cognitive enhancers or neuroprotectants.
Hypoxic and ischaemic brain damage are believed to involve excessive release of glutamate, and recent work shows that glutamate-induced damage in brain slices can be reduced by preconditioning with hypoxia or glutamate itself. Because adenosine is a powerful preconditioning agent, we have investigated whether adenosine could precondition against glutamate in vitro. In rat hippocampal slices, glutamate depolarization reduced the amplitudes of antidromic- and orthodromic-evoked potentials, with only partial recovery. Applying adenosine before these insults failed to increase that recovery. Ouabain also produced depolarization with partial reversibility, but adenosine pretreatment increased the extent of recovery. The preconditioning effect of adenosine on ouabain responses was prevented by blocking receptors for N-methyl-D-aspartate (NMDA), but not receptors for kainate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and was blocked by inhibiting nitric oxide synthase. Preconditioning was also abolished by the ATP-dependent potassium channel blockers, glibenclamide (cytoplasmic) or 5-hydroxydecanoate (mitochondrial). We conclude that adenosine does not precondition against glutamate in hippocampal slices, but that it does precondition against ouabain with a pharmacology similar to studies in vivo. Ischaemic neuronal damage is a complex of many factors, and because adenosine can precondition against ischaemic neuronal damage, its failure to protect against glutamate highlights limitations of using glutamate alone as a model for ischaemia. Because damage following ischaemia, trauma or excitotoxicity also involves reduced Na(+),K(+)-ATPase activity, and adenosine can precondition against ouabain, we propose that ouabain-induced damage represents an additional or alternative model for the contribution to cell damage of Na(+),K(+)-ATPase loss, this being more relevant to the mechanisms of preconditioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.