Targeted covalent inhibition is an established approach for increasing the potency and selectivity of potential drug candidates, as well as identifying potent and selective tool compounds for target validation studies. It is evident that identification of reversible recognition elements is essential for selective covalent inhibition, but this must also be achieved with the appropriate level of inherent reactivity of the reactive functionality (or "warhead"). Structural changes that increase or decrease warhead reactivity, guided by methods to predict the effect of those changes, have the potential to tune warhead reactivity and negate issues related to potency and/or toxicity. The half-life to adduct formation with glutathione (GSH t) is a useful assay for measuring the reactivity of cysteine-targeting covalent warheads but is limited to synthesized molecules. In this manuscript we assess the ability of several experimental and computational approaches to predict GSH t for a range of cysteine targeting warheads, including a novel method based on pK. Furthermore, matched molecular pairs analysis has been performed against our internal compound collection, revealing structure-activity relationships between a selection of different covalent warheads. These observations and methods of prediction will be valuable in the design of new covalent inhibitors with desired levels of reactivity.
RationaleTo capture all metabolites in metabolite identification studies, MS/MS information is required in both positive and negative ionization mode, usually involving several sample injections to gain all information about samples. A high‐resolution and high mass accuracy quadrupole/linear trap/Orbitrap tribrid instrument was used to gain this information in a novel single injection ‘capture‐all’ approach to metabolite identification.MethodsDiclofenac, a model compound, was incubated in human and rat hepatocytes. These incubated samples were run using an ultrahigh‐performance liquid chromatography/ultraviolet (UHPLC–UV) system coupled to a Thermo Fusion tribrid mass spectrometer. Five parallel scans were used: positive and negative ion full scan, data‐dependent MS/MS, both high energy dissociation and collision‐induced dissociation, and data‐independent all ion fragmentation (AIF) spectra were collected in positive and negative ion mode.ResultsNine metabolites were identified; a metabolite observed in the UV trace, but not positive ion full scan MS, was detected in the same sample injection by negative ion full scan MS. This was identified as a sulphate metabolite, and the corresponding negative ion AIF allowed for some structural elucidation. The use of a photo‐diode array (PDA) detector allowed for spectral assessment in case of changes in absorbance spectra, and the subsequent semi‐quantification of metabolites.ConclusionsThis method provided good‐quality MS/MS data across the m/z range in both positive and negative ion mode. The addition of both negative ion full scan MS and negative ion MS/MS allowed for the detection and structural elucidation of metabolites not observed in positive ion mode. The use of the PDA detector allowed for the semi‐quantification of metabolites.
We report the development of a large scale process for heat inactivation of clinical COVID-19 samples prior to laboratory processing for detection of SARS-CoV-2 by RT-qPCR. With more than 266 million confirmed cases, over 5.26 million deaths already recorded at the time of writing, COVID-19 continues to spread in many parts of the world. Consequently, mass testing for SARS-CoV-2 will remain at the forefront of the COVID-19 response and prevention for the near future. Due to biosafety considerations the standard testing process requires a significant amount of manual handling of patient samples within calibrated microbiological safety cabinets. This makes the process expensive, effects operator ergonomics and restricts testing to higher containment level laboratories. We have successfully modified the process by using industrial catering ovens for bulk heat inactivation of oropharyngeal/nasopharyngeal swab samples within their secondary containment packaging before processing in the lab to enable all subsequent activities to be performed in the open laboratory. As part of a validation process, we tested greater than 1200 clinical COVID-19 samples and showed less than 1 Cq loss in RT-qPCR test sensitivity. We also demonstrate the bulk heat inactivation protocol inactivates a murine surrogate of human SARS-CoV-2. Using bulk heat inactivation, the assay is no longer reliant on containment level 2 facilities and practices, which reduces cost, improves operator safety and ergonomics and makes the process scalable. In addition, heating as the sole method of virus inactivation is ideally suited to streamlined and more rapid workflows such as ‘direct to PCR’ assays that do not involve RNA extraction or chemical neutralisation methods.
Transmission of SARS-CoV-2 without symptoms is well described, and may be mitigated by mass testing. Nonetheless, the optimal implementation and quantitative real-world impact of this approach remain unclear. During a period of rising SARS-CoV-2 prevalence, students at the University of Cambridge were enrolled in a voluntary programme of weekly PCR-based asymptomatic screening. Swab pooling by household reduced the total testing capacity required by five-fold, without affecting laboratory workflows or compromising test sensitivity. Participation remained >75% throughout the study period. 299/671 (45%) of students diagnosed with SARS-CoV-2 were either identified or pre-emptively quarantined because of the screening programme. After a negative screening test, the risk of developing COVID-19 over the following 7 days was decreased by 51%. Modelling transmission using parameters from our study suggests a reduction in R0 of up to 31% attributable to weekly screening. We therefore demonstrate the feasibility and efficacy of regular, voluntary mass testing for COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.