Equine Odontoclastic Tooth Resorption and Hypercementosis (EOTRH) is a common, painful and poorly understood disease. Enamel, dentin and cementum accumulate both essential and toxic trace elements during mineralization. Characterization of the spatial accumulation pattern of trace elements may provide insight into the role that toxic elements play and inform biological processes affecting these hard dental tissues for future research. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to map the distribution of multiple trace elements and heavy metals across equine healthy and diseased (hypercementosis-affected) hard dental tissues among four teeth extracted from horses with EOTRH. Results showed banding patterns of some trace elements (lead, strontium, barium), reflecting the temporal component of accumulation of trace elements during dentin mineralization. Essential elements zinc and magnesium did not show banding patterns. Comparison to the unaffected cementum and dentin adjacent to the hypercementosis region showed that there is an underlying incremental pattern in the uptake of some metals with spatial irregularities. This supports a possible metabolic change involved in hypercementosis lesion development. This represents the first use of LA-ICP-MS to study the microspatial distribution of trace elements in equine teeth, establishing a baseline for elemental distribution in normal and EOTRH impacted dental hard tissue.
IntroductionTrace elements play a key role in dental tissue development, as dental hard tissues accumulate both essential and toxic trace elements during mineralization. Characterization of the spatial accumulation pattern of trace elements may provide insight into exposure to toxic elements over time and to the nature of disease processes affecting the hard dental tissues. Here, we present the first report of the use of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to map the microspatial distribution of multiple trace elements, essential and toxic, across feline dental hard tissues.MethodsEleven teeth were extracted from 8 cats. Nine teeth were from 7 cats diagnosed with idiopathic tooth resorption on intraoral radiographs prior to extraction. Two teeth were included from a cadaver that had no signs of tooth resorption on intraoral radiographs. The normal dental tissue was analyzed from each sample using LA-ICP-MS to map the microspatial distribution of essential and toxic trace elements across feline enamel, dentin, and cementum.ResultsResults showed a higher accumulation of barium and strontium in coronal dentin as compared to root dentin. The timing of the accumulation mirrors nursing timelines seen in teeth from human and non-human primates, consistent with barium and strontium being sourced from maternal milk. Results also showed a higher uptake of lead in the coronal dentin, suggesting this lead exposure was likely passed from mother to offspring.DiscussionThis work characterizes a baseline for elemental distribution in feline teeth linked to early life exposure to toxic elements such as lead and provides a framework for future studies investigating long-term environmental exposures to trace elements, essential and toxic, and their involvement in feline systemic and dental diseases.
A 20-year-old Warmblood broodmare was presented to the primary veterinarian for bilateral nasal discharge, which had been treated with sulfamethoxazole without complete resolution. The mare was referred to Cornell’s Equine Hospital after she began dropping feed without losing weight. Oral exam, radiography, computed tomography (CT) of the head, and upper airway endoscopy were performed, revealing a left sided nasal abscess filled with feed material due to an associated oronasal fistula between the left maxillary premolars (207 and 209) with reactive bone extending past 210. The abscess was debrided, and drainage was established via a transnasal standing approach under endoscopic guidance, with conservative management of the affected teeth. Repeated follow-up evaluations included upper respiratory endoscopic and oral endoscopic exams to monitor abscess resolution and to evaluate the compromised periodontal attachment of the affected teeth. This case highlights 1) the importance of advanced imaging in cases of equine nasal and sinus disease and 2) the success of conservative dental management when faced with a case of severe periodontitis with subsequent oronasal fistulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.