Regulatory T-cells (Tregs) are immunosuppressive T-cells, which arrest immune responses to ‘Self’ tissues. Some immunosuppressive Tregs that recognize seminal epitopes suppress immune responses to the proteins in semen, in both men and women. We postulated that GBMs express reproductive-associated proteins to manipulate reproductive Tregs and to gain immune privilege. We analyzed four GBM transcriptome databases representing ≈900 tumors for hypoxia-responsive Tregs, steroidogenic pathways, and sperm/testicular and placenta-specific genes, stratifying tumors by expression. In silico analysis suggested that the presence of reproductive-associated Tregs in GBM tumors was associated with worse patient outcomes. These tumors have an androgenic signature, express male-specific antigens, and attract reproductive-associated Related Orphan Receptor C (RORC)-Treg immunosuppressive cells. GBM patient sera were interrogated for the presence of anti-sperm/testicular antibodies, along with age-matched controls, utilizing monkey testicle sections. GBM patient serum contained anti-sperm/testicular antibodies at levels > six-fold that of controls. Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) are associated with estrogenic tumors which appear to mimic placental tissue. We demonstrate that RORC-Tregs drive poor patient outcome, and Treg infiltration correlates strongly with androgen levels. Androgens support GBM expression of sperm/testicular proteins allowing Tregs from the patient’s reproductive system to infiltrate the tumor. In contrast, estrogen appears responsible for MDSC/TAM immunosuppression.
Background: Glioblastoma (GBM) can use metabolic fuels other than glucose (Glc). The ability of GBM to use galactose (Gal) as a fuel via the Leloir pathway is investigated. Methods: Gene transcript data were accessed to determine the association between expression of genes of the Leloir pathway and patient outcomes. Growth studies were performed on five primary patient-derived GBM cultures using Glc-free media supplemented with Gal. The role of Glut3/Glut14 in sugar import was investigated using antibody inhibition of hexose transport. A specific inhibitor of GALK1 (Cpd36) was used to inhibit Gal catabolism. Gal metabolism was examined using proton, carbon and phosphorous NMR spectroscopy, with 13C-labeled Glc and Gal as tracers. Results: Data analysis from published databases revealed that elevated levels of mRNA transcripts of SLC2A3 (Glut3), SLC2A14 (Glut14) and key Leloir pathway enzymes correlate with poor patient outcomes. GBM cultures proliferated when grown solely on Gal in Glc-free media and switching Glc-grown GBM cells into Gal-enriched/Glc-free media produced elevated levels of Glut3 and/or Glut14 enzymes. The 13C NMR-based metabolic flux analysis demonstrated a fully functional Leloir pathway and elevated pentose phosphate pathway activity for efficient Gal metabolism in GBM cells. Conclusion: Expression of Glut3 and/or Glut14 together with the enzymes of the Leloir pathway allows GBM to transport and metabolize Gal at physiological glucose concentrations, providing GBM cells with an alternate energy source. The presence of this pathway in GBM and its selective targeting may provide new treatment strategies.
Malignant gliomas, including glioblastomas, are extremely difficult to treat. The median survival for glioblastoma patients with optimal therapeutic intervention is 15 months. We developed a novel MAO-B-selectively activated prodrug, N,N-bis(2-chloroethyl)-2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)propanamide (MP-MUS), for the treatment of gliomas based on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The design of neutral MP-MUS involved the use of a seeker molecule capable of binding to mitochondrial MAO-B, which is up-regulated ≥fourfold in glioma cells. Once the binding occurs, MP-MUS is converted into a positively charged moiety, P(+) -MUS, which accumulates inside mitochondria at a theoretical maximal value of 1000:1 gradient. The LD50 of MP-MUS against glioma cells is 75 μM, which is two- to threefold more potent than temozolomide, a primary drug for gliomas. Importantly, MP-MUS was found to be selectively toxic toward glioma cells. In the concentration range of 150-180 μM MP-MUS killed 90-95 % of glioma cells, but stimulated the growth of normal human astrocytes. Moreover, maturation of MP-MUS is highly dependent on MAO-B, and inhibition of MAO-B activity with selegiline protected human glioma cells from apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.