Currently available knee joint kinematic tracking systems fail to nondestructively capture the subtle variation in joint and soft tissue kinematics that occur in native, injured, and reconstructed joint states. Microcomputed tomography (CT) imaging has the potential as a noninvasive, high-resolution kinematic tracking system, but no dynamic simulators exist to take advantage of this. The purpose of this work was to develop and assess a novel micro-CT compatible knee joint simulator to quantify the knee joint's kinematic and kinetic response to clinically (e.g., pivot shift test) and functionally (e.g., gait) relevant loading. The simulator applies closed-loop, load control over four degrees-of-freedom (DOF) (internal/external rotation, varus/valgus rotation, anterior/posterior translation, and compression/distraction), and static control over a fifth degree-of-freedom (flexion/extension). Simulator accuracy (e.g., load error) and repeatability (e.g., coefficient of variation) were assessed with a cylindrical rubber tubing structure and a human cadaveric knee joint by applying clinically and functionally relevant loads along all active axes. Micro-CT images acquired of the joint at a loaded state were then used to calculate joint kinematics. The simulator loaded both the rubber tubing and the cadaveric specimen to within 0.1% of the load target, with an intertrial coefficient of variation below 0.1% for all clinically relevant loading protocols. The resultant kinematics calculated from the acquired images agreed with previously published values, and produced errors of 1.66 mm, 0.90 mm, 4.41 deg, and 1.60 deg with respect to anterior translation, compression, internal rotation, and valgus rotation, respectively. All images were free of artifacts and showed knee joint displacements in response to clinically and functionally loading with isotropic CT image voxel spacing of 0.15 mm. The results of this study demonstrate that the joint-motion simulator is capable of applying accurate, clinically and functionally relevant loads to cadaveric knee joints, concurrent with micro-CT imaging. Nondestructive tracking of bony landmarks allows for the precise calculation of joint kinematics with less error than traditional optical tracking systems.
Purpose To noninvasively characterize the ligament strain in the hip capsule using a novel CT-based imaging technique. Methods The superior iliofemoral ligament (SIFL), inferior iliofemoral ligament (IIFL), ischiofemoral ligament (IFL) and pubofemoral ligament (PFL) were identified and beaded in seven cadavers. Specimens were mounted on a joint motion simulator within an O-arm CT scanner in − 15°, 0°, 30°, 60°, and 90° of flexion. 3 Nm of internal rotation (IR) and external rotation (ER) were applied and CT scans obtained. Strains were calculated by comparing bead separation in loaded and unloaded conditions. Repeated-measures ANOVA was used to evaluate differences in strain within ligaments between hip positions. Results For the SIFL, strain significantly decreased in IR at 30° (p = 0.045) and 60° (p = 0.043) versus 0°. For ER, there were no significant position-specific changes in strain (n.s.). For the IIFL, strain decreased in IR and increased in ER with no significant position-specific differences. For the IFL, strain increased with IR and decreased with ER with no significant position-specific differences. Finally, in the PFL there was a significant flexion angle-by-load interaction (p < 0.001; ES = 0.566), with peak strains noted at 60˚, however pair-wise comparisons failed to identify significant differences between positions (n.s.). Strain decreased in ER, with no significant position-specific differences. Conclusion The SIFL and IIFL limit hip external rotation with greater effect in higher flexion angles, while the IFL and PFL limit hip internal rotation. Following hip arthroscopy, consideration should be given to restricting external rotation as traditional capsulotomies cause injury to the SIFL and IIFL.
Background: As our understanding of anterior cruciate ligament (ACL) anatomy has evolved, surgical techniques to better replicate the native anatomy have been developed. It has been proposed that the introduction of a rectangular socket ACL reconstruction to replace a ribbon-shaped ACL has the potential to improve knee kinematics after ACL reconstruction. Purpose: To compare a rectangular femoral tunnel (RFT) with a cylindrical femoral tunnel (CFT) in terms of replicating native ACL strain and knee kinematics in a time-zero biomechanical anatomic ACL reconstruction model using a bone–patellar tendon–bone (BTB) graft. Study Design: Controlled laboratory study. Methods: In total, 16 fresh-frozen, human cadaveric knees were tested in a 5 degrees of freedom, computed tomography–compatible joint motion simulator. Knees were tested with the ACL intact before randomization to RFT or CFT ACL reconstruction using a BTB graft. An anterior translation load and an internal rotation moment were each applied at 0°, 30°, 60°, and 90° of knee flexion. A simulated pivot shift was performed at 0° and 30° of knee flexion. Ligament strain and knee kinematics were assessed using computed tomography facilitated by insertion of zirconium dioxide beads placed within the substance of the native ACL and BTB grafts. Results: For the ACL-intact state, there were no differences between groups in terms of ACL strain or knee kinematics. After ACL reconstruction, there were no differences in ACL graft strain when comparing the RFT and CFT groups. At 60° of knee flexion with anterior translation load, there was significantly reduced strain in the reconstructed state ([mean ±standard deviation] CFT native, 2.82 ± 3.54 vs CFT reconstructed, 0.95 ± 2.69; RFT native, 2.77 ± 1.71 vs RFT reconstructed, 1.40 ± 1.76) independent of the femoral tunnel type. In terms of knee kinematics, there were no differences when comparing the RFT and CFT groups. Both reconstructive techniques were mostly effective in restoring native knee kinematics and ligament strain patterns as compared with the native ACL. Conclusion: In the time-zero biomechanical environment, similar graft strains and knee kinematics were achieved using RFT and CFT BTB ACL reconstructions. Both techniques appeared to be equally effective in restoring kinematics associated with the native ACL state. Clinical Relevance: These data suggest that in terms of knee kinematics and graft strain, there is no benefit in performing the more technically challenging RFT as compared with a CFT BTB ACL reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.