The post-transcriptional mechanisms contributing to molecular regulation of developmental lymphangiogenesis and lymphatic network assembly are not well understood. MicroRNAs are important post-transcriptional regulators during development. Here, we use high throughput small RNA sequencing to identify miR-204, a highly conserved microRNA dramatically enriched in lymphatic vs. blood endothelial cells in human and zebrafish. Suppressing miR-204 leads to loss of lymphatic vessels while endothelial overproduction of miR-204 accelerates lymphatic vessel formation, suggesting a critical positive role for this microRNA during developmental lymphangiogenesis. We also identify the NFATC1 transcription factor as a key miR-204 target in human and zebrafish, and show that NFATC1 suppression leads to lymphatic hyperplasia. The loss of lymphatics caused by miR-204 deficiency can be largely rescued by either endothelial autonomous expression of miR-204 or by suppression of NFATC1. Together, our results highlight a miR-204/NFATC1 molecular regulatory axis required for proper lymphatic development.
The post-transcriptional mechanisms contributing to molecular regulation of developmental lymphangiogenesis and lymphatic network assembly are not well understood. Here, we use high throughput small RNA sequencing to identify miR-204, a highly conserved miRNA dramatically enriched in lymphatic vs. blood endothelial cells, and we demonstrate that this miRNA plays a critical role during lymphatic development. Suppressing miR-204 leads to loss of lymphatic vessel formation, while overproducing miR-204 in lymphatic vessels accelerates lymphatic vessel formation, suggesting a positive role during developmental lymphangiogenesis. We also identify the NFATC1 transcription factor as a key conserved target for post-transcriptional regulation by miR-204 during lymphangiogenesis. While miR-204 suppression leads to loss of lymphatics, knocking down its target NFATC1 leads to lymphatic hyperplasia, and the loss of lymphatics in miR-204-deficient animals can be rescued by NFATC1 knockdown. Together, our results highlight a miR-204/NFATC1 molecular regulatory axis required for proper lymphatic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.