Purpose of review Given the enormous impact congenital heart disease has on child health, it is imperative that we improve our understanding of the disease mechanisms that underlie patient phenotypes and clinical outcomes. This review will outline the merits of using the frog model, Xenopus, as a tool to study human cardiac development and left-right patterning mechanisms associated with congenital heart disease. Recent findings Patient-driven gene discovery continues to provide new insight into the mechanisms of congenital heart disease, and by extension, patient phenotypes and outcomes. By identifying gene variants in CHD patients, studies in Xenopus have elucidated the molecular mechanisms of how these candidate genes affect cardiac development, both cardiogenesis as well as left-right patterning, which can have a major impact on cardiac morphogenesis. Xenopus has also proved to be a useful screening tool for the biological relevance of identified patient-mutations, and ongoing investigations continue to illuminate disease mechanisms. Summary Analyses in model organisms can help to elucidate the disease mechanisms underlying CHD patient phenotypes. Using Xenopus to disentangle the genotype-phenotype relationships of well-known and novel disease genes could enhance the ability of physicians to efficaciously treat patients and predict clinical outcomes, ultimately improving quality of life and survival rates of patients born with congenital heart disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.