Parallel global rise in pit-latrine sanitation and groundwater-supply provision is of concern due to the frequent spatial proximity of these activities. Study of such an area in Malawi has allowed understanding of risks posed to groundwater from the recent implementation of a typical developing-country pit-latrine sanitation policy to be gained. This has assisted the development of a risk-assessment framework approach pragmatic to regulatory-practitioner management of this issue. The framework involves water-supply and pit-latrine mapping, monitoring of key groundwater contamination indicators and surveys of possible environmental site-condition factors and culminates in an integrated statistical evaluation of these datasets to identify the significant factors controlling risks posed. Our approach usefully establishes groundwater-quality baseline conditions of a potentially emergent issue for the study area. Such baselines are foundational to future trend discernment and contaminant natural attenuation verification critical to policies globally. Attribution of borehole contamination to pit-latrine loading should involve, as illustrated, the use of the range of contamination (chemical, microbiological) tracers available recognising none are ideal and several radial and capture-zone metrics that together may provide a weight of evidence. Elevated, albeit low-concentration, nitrate correlated with some radial metrics and was tentatively suggestive of emerging latrine influences. Longer term monitoring is, however, necessary to verify that the commonly observed latrine-borehole separation distances (29-58m), alongside statutory guidelines, do not constitute significant risk. Borehole contamination was limited and correlation with various environmental-site condition factors also limited. This was potentially ascribed to effectiveness of attenuation to date, monitoring of an emergent problem yet to manifest, or else contamination from other sources. High borehole usage and protective wall absence correlated with observed microbiological contamination incidence, but could relate to increased human/animal activity close to these poorly protected boreholes. Additional to factors assessed, a groundwater-vulnerability factor is recommended that critically relies upon improved proactive securing of underpinning data during borehole/latrine installations. On-going concerns are wide ranging, including poorly constrained pit-latrine input, difficulties in assessing in-situ plume natural attenuation and possible disposal of used motor oils to latrines.
The sustainability of rural groundwater supply infrastructure, primarily boreholes fitted with hand pumps, remains a challenge. This study evaluates whether coverage targets set out within the Millennium Development Goals (MDG) inadvertently increased the challenge to sustainably manage water supply infrastructure. Furthermore, the drive towards decentralised service delivery contributes to the financial burden of water supply assets. A sample size of 14,943 Afridev hand pump boreholes was extracted from a comprehensive live data set of 68,984 water points across Malawi to investigate the sustainability burden as emphasis shifts to the 2030 agenda. The results demonstrate that the push for coverage within the MDG era has impacted the sustainability of assets. A lack of proactive approaches towards major repairs and sub-standard borehole construction alongside aging infrastructure contributes to reduced functionality of decentralised supplies. Furthermore, costly rehabilitation is required to bring assets to operational standards, in which external support is commonly relied upon. Acceleration towards the coverage targets has contributed towards unsustainable infrastructure that has further implications moving forward. These findings support the need for Sustainable Development Goals (SDG) investment planning to move from a focus on coverage targets to a focus on quality infrastructure and proactive monitoring approaches to reduce the future burden placed on communities.
Highlights Effective response to developing-world groundwater salinity to safeguard water supply Salinity problem defined via conceptual model -salinity survey -water-point mapping Groundwater salinity response capacity constrained in Malawi by multiple factors Need to evaluate options beyond model-supply paradigm of hand-pumped borehole supply Feasibility study of larger groundwater or surface-water supply alternatives to boldly go beyond Responding to groundwater salinity in rural African alluvial valley aquifer systems the world of hand-pumped groundwater supply?
Local-scale opportunities to address challenges of the water-food nexus in the developing world need to be embraced. Borehole-garden permaculture is advocated as one such opportunity that involves the sustainable use of groundwater spilt at hand-pump operated borehole supplies that is otherwise wasted. Spilt water may also pose health risks when accumulating as a stagnant pond. Rural village community use of this grey-water in permaculture projects to irrigate borehole gardens is proposed to primarily provide economic benefit whereby garden-produce revenue helps fund borehole water-point maintenance. Water-supply sustainability, increased food/nutrition security, health protection from malaria, and business opportunity benefits may also arise. Our goal has been to develop an, experience-based, framework for delivery of sustainable borehole-garden permaculture and associated benefits. This is based upon data collection and permaculture implementation across the rural Chikwawa District of Malawi during 2009-17. We use, stakeholder interviews to identify issues influencing uptake, gathering of stagnant pond occurrence data to estimate amelioration opportunity, quantification of permaculture profitability to validate economic potential, and critical assessment of recent permaculture uptake to identify continuing problems. Permaculture was implemented at 123 sites representing 6% of District water points, rising to 26% local area coverage. Most implementations were at, or near, newly drilled community-supply boreholes; hence, amelioration of prevalent stagnant ponds elsewhere remains a concern. The envisaged benefits of permaculture were manifest and early data affirm projected garden profitability and spin-off benefits of water-point banking and community micro-loan access. However, a diversity of technical, economic, social and governance issues were found to influence uptake and performance. Example issues include greater need for improved bespoke garden design input, on-going project performance assessment, and coordinated involvement of multi-sector governmental-development bodies to underpin the integrated natural-resource management required. The developed framework aims to manage the identified issues and requires the concerted action of all stakeholders. Based on the probable ubiquity of underlying issues, the framework is expected to be generalizable to the wider developing world. However, this particular application of permaculture represents a fraction of its greater potential opportunity for rural communities that should be explored.
Despite an estimated 90,000 groundwater points, mostly hand-pumped boreholes, being used for drinking-water supply in Malawi, evaluation of groundwater arsenic has been limited. Here we review the literature and collate archive data on groundwater arsenic occurrence in Malawi; add to these data, by surveying occurrence in handpumped boreholes in susceptible aquifers; and, conclude on risks to water supply. Published literature is sparse with two of the three studies reporting arsenic data in passing, with concentrations below detection limits. The third study of 25 alluvial aquifer boreholes found arsenic mostly at 1-10 μg/l concentration, but with four sites above the World Health Organisation (WHO) 10 μg/l drinking-water guideline, up to 15 μg/l; the study also discerned hydrochemical controls. Archive data from non-governmental organisation (NGO) borehole testing (two datasets) exhibited below detection results. Our surveys in 2014-18 of hand-pumped supplies in alluvial and bedrock aquifers tested 310 groundwater sites (78% alluvial, 22% bedrock) and found below test-kit detection (<10 μg/l) arsenic throughout, except possible traces at two boreholes containing geothermal-groundwater contributions. Our subsequent survey of 15 geothermal groundwater boreholes/springs found four sites with arsenic detected at 4-12 μg/l concentration. These sites displayed the highest temperatures, supporting increased arsenic being related to a geothermal groundwater influence. Our 919 sample dataset overall indicates arsenic in Malawian groundwater appears low, and well within Malawi's drinking-water standard of 50 μg/l (MS733:2005). Still, however, troublesome concentrations above the WHO drinking-water guideline occur. Continued research is needed to confirm that human-health risks are low; including, increased monitoring of the great many hand-pumped supplies, and assessing hydro-biogeochemical controls on the higher arsenic concentrations found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.