Poly(3-octylthiophene), (P3OT) in addition to its electronics properties exhibits a high Kerr coefficient, n 2 , due to its third order nonlinear dielectric susceptibility. At the wavelength of 1550 nm, this coefficient n 2 is one of the highest. So, this material should be suitable to build integrated all optical switching devices. To construct this device, it is necessary to make a singlemode optical waveguide. For the time being, such a P3OT waveguide has never been obtained due to excessive optical losses. In view to produce single-mode waveguide with P3OT as a core, we investigated the different causes of these optical losses in the material and in the guiding structure. We characterized the optical transmission at key steps in its development. First, we demonstrated that the intrinsic polymer absorption is not a limiting factor at 1550 nm, and then we studied the transmission properties of planar (1-D confined light) and channel waveguides (2-D confined light). The results revealed that better transmission properties can be achieved using planar waveguides rather that confined channel waveguides. This article describes the development and the characterization of the guiding structures that enabled us to identify the main origins of optical losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.