The medial orbitofrontal cortex (mOFC) is known to support flexible control of goal-directed behavior. However, limited evidence suggests that the mOFC also mediates the ability of organisms to work with vigor towards a selected goal, a hypothesis that received little consideration to date. Here we show that excitotoxic mOFC lesion increased responding under a progressive ratio (PR) schedule of reinforcement, that is, the highest ratio achieved, and increased the preference for the high effort-high reward option in an effort-related decision-making task, but left intact outcome-selective Pavlovian-instrumental transfer and outcome-specific devaluation. Moreover, pharmacological inhibition of the mOFC increased, while pharmacological stimulation reduced PR responding. In addition, pharmacological mOFC stimulation attenuated methylphenidate-induced increase of PR responding. Intact rats tested for PR responding displayed higher numbers of c-Fos positive mOFC neurons than appropriate controls; however, mOFC neurons projecting to the nucleus accumbens did not show a selective increase in neuronal activation implying that they may not play a major role in regulating PR responding. Collectively, these results suggest that the mOFC plays a major role in mediating effort-related motivational functions. Moreover, our data demonstrate for the first time that the mOFC modulates effort-related effects of psychostimulant drugs.
Background
Pavlovian stimuli predictive of appetitive outcomes can exert a powerful influence on the selection and initiation of action, a phenomenon termed outcome-selective Pavlovian-instrumental transfer (sPIT). Rodent studies suggest that sPIT is insensitive to motivational downshift induced by outcome devaluation, an effect that is, however, relatively underexplored.
Methods
Here we examined in detail the effects of distinct shifts in motivation from hunger to a state of relative satiety on sPIT in rats.
Results
A motivational downshift by outcome-specific devaluation immediately prior to testing markedly reduced overall lever responding and magazine entries, but left intact the sPIT effect. A motivational downshift prior testing by i) giving ad libitum rather than restricted access to maintenance diet in the home cage for 24 h or by ii) a systemic blockade of hormone secretagagogue receptor subtype 1A receptors to inhibit orexigenic actions of ghrelin both reduced overall lever responding and magazine entries. Moreover, these latter motivational downshifts reduced the sPIT effect, however, the effect sizes of the sPIT effects were still large.
Conclusions
Collectively, our rodent findings indicate that major effects of various motivational downshifts are overall inhibition of lever pressing and magazine approach, possibly reflecting reduced general motivation. The observed effects of motivational downshifts on sPIT have implications with regard to the role of general motivating effects in sPIT and to the contribution of Pavlovian-instrumental interactions to excessive food seeking as well as obesity in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.