Manufactured nanomaterials (MNMs) selected from a library of over 120 different MNMs with varied compositions, sizes, and surface coatings were tested by four different laboratories for toxicity by high-throughput/-content (HT/C) techniques. The selected particles comprise 14 MNMs composed of CeO, Ag, TiO, ZnO and SiO with different coatings and surface characteristics at varying concentrations. The MNMs were tested in different mammalian cell lines at concentrations between 0.5 and 250 µg/mL to link physical-chemical properties to multiple adverse effects. The cell lines are derived from relevant organs such as liver, lung, colon and the immune system. Endpoints such as viable cell count, cell membrane permeability, apoptotic cell death, mitochondrial membrane potential, lysosomal acidification and steatosis have been studied. Soluble MNMs, Ag and ZnO, were toxic in all cell types. TiO and SiO MNMs also triggered toxicity in some, but not all, cell types and the cell type-specific effects were influenced by the specific coating and surface modification. CeO MNMs were nearly ineffective in our test systems. Differentiated liver cells appear to be most sensitive to MNMs, Whereas most of the investigated MNMs showed no acute toxicity, it became clear that some show adverse effects dependent on the assay and cell line. Hence, it is advised that future nanosafety studies utilise a multi-parametric approach such as HT/C screening to avoid missing signs of toxicity. Furthermore, some of the cell type-specific effects should be followed up in more detail and might also provide an incentive to address potential adverse effects in vivo in the relevant organ.
The temporal context of cell death decisions remains generally hidden in ensemble measurements with endpoint readouts. Here, we describe a method to extract event times from fluorescence time traces of cell death-related markers in automated live-cell imaging on single-cell arrays (LISCA) using epithelial A549 lung and Huh7 liver cancer cells as a model system. In pairwise marker combinations, we assess the chronological sequence and delay times of the events lysosomal membrane permeabilization, mitochondrial outer membrane permeabilization and oxidative burst after exposure to 58 nm amino-functionalized polystyrene nanoparticles (PS-NH2 nanoparticles). From two-dimensional event-time scatter plots we infer a lysosomal signal pathway at a low dose of nanoparticles (25 µg mL−1) for both cell lines, while at a higher dose (100 µg mL−1) a mitochondrial pathway coexists in A549 cells, but not in Huh7. In general, event-time correlations provide detailed insights into heterogeneity and interdependencies in signal transmission pathways.
Micropatterned arrays considerably advanced single cell fluorescence time-lapse measurements by providing standardized boundary conditions for thousands of cells in parallel. In these assays, cells are forced to adhere to defined microstructured protein islands separated by passivated, nonadhesive areas. Here we provide a detailed protocol on how to reproducibly fabricate high quality single cell arrays by microscale plasma-initiated protein patterning (μPIPP). Advantages of μPIPP arrays are the ease of preparation and the unrestricted choice of substrates as well as proteins. We demonstrate how the arrays enable the efficient measurement of single cell time trajectories using automated data acquisition and data analysis by example of single cell gene expression after mRNA transfection and time courses of single cell apoptosis. We discuss the more general use of the protocol for assessment of single cell dynamics with the help of fluorescent reporters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.