Outpatient administration of rATG is feasible, safe, and did not increase readmissions in the period directly following administration. The findings of this analysis support our continued use of the outpatient rATG protocol at our institution.
BackgroundEmergence of multidrug-resistant (MDR) Enterobacteriaceae complicates the selection of empiric antibiotic therapy. Software called Precision Antibiotic Therapy (PAT) (Teqqa, LLC; Jackson, WY) operationalizes a predictive model using patient factors to make real-time, personalized predictions of antibiotic susceptibility for each antibiotic, allowing prescribers to choose empiric therapy for patients at risk for resistant infections. The purpose of this study was to determine the performance of PAT software in identifying MDR Enterobacteriaceaebloodstream infections (BSI) as well as to determine optimal thresholds of predicted antibiotic susceptibility to choose a broader-spectrum antibiotic.MethodsWe conducted a retrospective cohort study including 475 unique patients with BSIs caused by Enterobacteriaceaefrom January 1, 2016 through December 31, 2016. First-line antibiotic therapy for BSI was defined as cefepime, piperacillin-tazobactam, levofloxacin, or aztreonam. Susceptibilities predicted by PAT were compared with known susceptibilities determined by routine laboratory testing. PAT thresholds for broadening antibiotics were assessed when predicted susceptibilities were 80%, 85%, 90%, and 95% using receiver-operating characteristic (ROC) curves. Performance characteristics were calculated for each threshold. Brier score calculations were then used to compare the accuracy of PAT predictions using the optimized predicted susceptibility threshold, to that of aggregate institutional susceptibility data.ResultsROC curve analysis demonstrated an area under the curve of 0.82 for the 95% threshold. The sensitivity for the PAT prediction utilizing the 95% threshold was 91.7% with a specificity of 74.3%. The Brier score for the 2016 antibiogram to determine antibiotic therapy was 0.085, whereas the Brier score using PAT software was 0.071, representing a 16% improvement in accuracy.ConclusionPAT software demonstrated excellent capability to discriminate between Enterobacteriaceae BSIs resistant and susceptible to first-line therapy. A predicted susceptibility threshold of 95% should be used to indicate a need for escalation of empiric antibiotic therapy using PAT.Disclosures All authors: No reported disclosures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.