SummaryWe determined the number and functional status of CD4 + CD25 high regulatory T cells (Treg) in blood samples from patients with metastatic carcinoma, and evaluated their sensitivity to a single intravenous infusion of cyclophosphamide. Treg numbers were significantly higher in 49 patients with metastatic cancer (9·2% of CD4 + T cells) compared to 24 healthy donors (7·1%). These cells expressed the transcription factor forkhead box P3 (FoxP3), glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR) and intracellular CD152, and demonstrated a suppressive activity in vitro against CD4 + CD25 -autologous proliferation. At a single intravenous infusion, cyclophosphamide failed, in association with a non-specific immunotherapy by intratumoral bacille Calmette-Guérin (BCG), to modulate significantly Treg numbers or function. Metastatic cancer is associated with an expansion of peripheral blood CD4 + CD25 high FoxP3 + GITR + CD152 + Treg cells whose immunosuppressive properties do not differ from those of healthy subjects. Moreover, cyclophosphamide administration may not represent an optimal therapy to eliminate Treg, which further underlines the need to identify specific agents that would selectively deplete these cells.
Dendritic cells (DCs) are well known for their capacity to induce adaptive antitumor immune response through Ag presentation and tumor-specific T cell activation. Recent findings reveal that besides this role, DCs may display additional antitumor effects. In this study, we provide evidence that LPS- or IFN-γ-activated rat bone marrow-derived dendritic cells (BMDCs) display killing properties against tumor cells. These cytotoxic BMDCs exhibit a mature DC phenotype, produce high amounts of IL-12, IL-6, and TNF-α, and retain their phagocytic properties. BMDC-mediated tumor cell killing requires cell-cell contact and depends on NO production, but not on perforin/granzyme or on death receptors. Furthermore, dead tumor cells do not exhibit characteristics of apoptosis. Thus, intratumoral LPS injections induce an increase of inducible NO synthase expression in tumor-infiltrating DCs associated with a significant arrest of tumor growth. Altogether, these results suggest that LPS-activated BMDCs represent powerful tumoricidal cells which enforce their potential as anticancer cellular vaccines.
The identification of the most efficient strategy for tumor antigen loading of dendritic cells (DCs) remains a challenge in cancer immunotherapy protocols. Autologous dead tumor cells have been demonstrated to constitute an acceptable source of multiple tumor-associated antigens (TAA) to pulse DCs. However the optimal approach for inducing cell death that would lead to effective endocytosis and activation of DCs remains controversial. In this study we have induced and defined 3 distinct mechanisms of tumor cell death (apoptosis, necrosis and fusion-mediated cell death), and investigated their differential effects on DCs. Bone marrow-derived DCs demonstrated comparable uptake of primary apoptotic, necrotic, or fused dead tumor cells. Furthermore, the distinct modes of cancer cell death had analogous potential in activating the transcription factors NF-kappaB and STAT1 and in maturing DCs, resulting in an equally effective stimulation of immune T cells. The current study therefore provides further informations on the use of dead whole tumor cells as antigen sources for effective active anti-cancer immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.