Cells in mechanically challenged environments must cope with high amplitude forces to maintain cell viability and tissue homeostasis. Currently, force-induced cell death and the identity of mechanoprotective factors are not defined. We examined death in cultured periodontal fibroblasts, connective tissue cells that are exposed to heavy applied forces in vivo. Static tensile forces (0.48 piconewtons/m 2 cell area) were applied through magnetite beads coated with collagen or bovine serum albumin. There was a time-dependent increase of the percentage of propidium iodide-permeable cells in force-loaded cultures incubated with collagen but not bovine serum albumin beads, indicating a role for integrins. Cells exhibited reduced mitochondrial membrane potential, increased caspase-3 activation, nuclear condensation, terminal deoxynucleotidyl transferase nick end labeling staining, and detachment from the culture dish. The caspase-3 inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde reduced detachment 3-fold. There was a rapid (<10-s) decrease in plasma membrane potential after force application, which, in filamin A-deficient melanoma cells, contributed to irreversible cell depolarization. In fibroblast cultures, cells with increased permeability to propidium iodide exhibited ϳ2-fold less filamin A content than impermeable cells. Fibroblasts transfected with antisense filamin A constructs or with filamin A constructs without an actin-binding domain exhibited 2-3-fold increased proportions of dead cells relative to controls. We conclude that high amplitude forces delivered through integrins can promote apoptosis in a proportion of cells and that filamin A confers mechanoprotection by preventing membrane depolarization.
Clinical response to immune checkpoint inhibitors (ICIs) varies significantly and the majority of studies into their effectiveness are focused on primary tumours of single histologies. This retrospective study utilises whole genome and transcriptome analysis (WGTA) to examine a pan-cancer cohort of advanced and previously treated patients which are currently underrepresented in the field, yet encompass a large proportion of cancer patients routinely seen in clinics. Our results reveal that tumour mutation burden and immune expression signatures are efficient at stratifying patients in this context, but suggest that PD-L1 testing may not be the most appropriate clinical biomarker for these patients. This study also demonstrates the benefit of measuring multiple markers simultaneously, highlighting the clinical utility of WGTA in selecting patients most likely to benefit from ICIs. Research.
This study tested the claim that digital PCR (dPCR) can offer highly reproducible quantitative measurements in disparate laboratories. Twenty-one laboratories measured four blinded samples containing different quantities of a KRAS fragment encoding G12D, an important genetic marker for guiding therapy of certain cancers. This marker is challenging to quantify reproducibly using quantitative PCR (qPCR) or next generation sequencing (NGS) due to the presence of competing wild type sequences and the need for calibration. Using dPCR, 18 laboratories were able to quantify the G12D marker within 12% of each other in all samples. Three laboratories appeared to measure consistently outlying results; however, proper application of a follow-up analysis recommendation rectified their data. Our findings show that dPCR has demonstrable reproducibility across a large number of laboratories without calibration. This could enable the reproducible application of molecular stratification to guide therapy and, potentially, for molecular diagnostics.
Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.