Significance The evolution of brain processing capacity has traditionally been inferred from data on brain size. However, similarly sized brains of distantly related species can differ in the number and distribution of neurons, their basic computational units. Therefore, a finer-grained approach is needed to reveal the evolutionary paths to increased cognitive capacity. Using a new, comprehensive dataset, we analyzed brain cellular composition across amniotes. Compared to reptiles, mammals and birds have dramatically increased neuron numbers in the telencephalon and cerebellum, which are brain parts associated with higher cognition. Astoundingly, a phylogenetic analysis suggests that as few as four major changes in neuron–brain scaling in over 300 million years of evolution pave the way to intelligence in endothermic land vertebrates.
Within-species variation in the number of neurons, other brain cells and their allocation to different brain parts is poorly studied. Here, we assess these numbers in a squamate reptile, the Madagascar ground gecko ( Paroedura picta ). We examined adults from two captive populations and three age groups within one population. Even though reptiles exhibit extensive adult neurogenesis, intrapopulation variation in the number of neurons is similar to that in mice. However, the two populations differed significantly in most measures, highlighting the fact that using only one population can underestimate within-species variation. There is a substantial increase in the number of neurons and decrease in neuronal density in adult geckos relative to hatchlings and an increase in the number of neurons in the telencephalon in fully grown adults relative to sexually mature young adults. This finding implies that adult neurogenesis does not only replace worn out but also adds new telencephalic neurons in reptiles during adulthood. This markedly contrasts with the situation in mammals, where the number of cortical neurons declines with age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.