Prevalence of heparin-induced thrombocytopenia and heparin-induced thrombocytopenia-related thrombosis among extracorporeal membrane oxygenator patients at our institution is relatively high. Using platelet count trends to guide decision to test for heparin-induced thrombocytopenia is not an optimal strategy in extracorporeal membrane oxygenator patients. Without a validated pretest probability clinical score, serosurveillance in a defined high-risk group of extracorporeal membrane oxygenator patients may be needed.
Intensivists are increasingly likely to encounter patients requiring mechanical circulatory support with left ventricular assist devices at various points in the trajectory of their disease, from the immediate postimplant period to subsequent admissions for complications, and at end of life. A basic understanding of left ventricular assist device physiology is essential to the safe and effective care of these patients.
Introduction: The pandemic of the coronavirus disease 2019 (COVID-19) and associated pneumonia represent a clinical and scientific challenge. The role of Extracorporeal Membrane Oxygenation (ECMO) in such a crisis remains unclear. Methods: We examined COVID-19 patients who were supported for acute respiratory failure by both conventional mechanical ventilation (MV) and ECMO at a tertiary care institution in Washington DC. The study period extended from March 23 to April 29. We identified 59 patients who required invasive mechanical ventilation. Of those, 13 patients required ECMO. Results: Nine out of 13 ECMO (69.2%) patients were decannulated from ECMO. All-cause ICU mortality was comparable between both ECMO and MV groups (6 patients [46.15%] vs. 22 patients [47.82 %], p = 0.92). ECMO non-survivors vs survivors had elevated D-dimer (9.740 mcg/ml [4.84-20.00] vs. 3.800 mcg/ml [2.19-9.11], p = 0.05), LDH (1158 ± 344.5 units/L vs. 575.9 ± 124.0 units/L, p = 0.001), and troponin (0.4315 ± 0.465 ng/ml vs. 0.034 ± 0.043 ng/ml, p = 0.04). Time on MV as expected was significantly longer in ECMO groups (563.3 hours [422.1-613.9] vs. 247.9 hours [101.8-479] in MV group, p = 0.0009) as well as ICU length of stay 576.2 hours [457.5-652.8] in ECMO group vs. 322.2 hours [120.6-569.3] in MV group, p = 0.012). Conclusion: ECMO is a supportive intervention for COVID-19 associated pneumonia that could be considered if the optimum mechanical ventilation is deemed ineffective. Biomarkers such as D-dimer, LDH, and troponin could help with discerning the clinical prognosis in patients with COVID-19 pneumonia.
Dexmedetomidine has become a popular sedative in the intensive care unit for patients undergoing mechanical ventilation because of its highly selective α-2 agonism, which exerts a combination of anesthetic, analgesic, and anxiolytic effects. Bradycardia and hypotension have been reported as the most common side effects of its use in large studies. Dexmedetomidine has been reported to induce polyuria by suppressing vasopressin secretion and increasing permeability of the collecting ducts in a dose-dependent fashion. We report a case of dexmedetomidine-related polyuria that occurred with a high-dose continuous infusion and subsequently resolved with discontinuation of the drug. (Anesth Analg 2013;117:150-2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.